Exemple #1
0
 def __init__(self, parent=None, tp=1, trade_interval=60):
     super(figure, self).__init__(parent)
     self.type = tp
     figure.fig_num += 1
     self.fig_num = figure.fig_num
     self.title = ''
     self.sid = ''
     self.init_figure()
     self.interval = del2num(trade_interval)
     self.canvas1 = figureCanvas(self.figure1)
     self.canvas1.draw()
     self.layout = QHBoxLayout(self)
     self.layout.addWidget(self.canvas1)
     if self.type != figure.CDF_PLOT:
         if trade_interval < 60:
             self.xlocater = SecondLocator(bysecond=range(0, 60, trade_interval))
             self.xformatter = DateFormatter("%H:%M:%S")
         else:
             self.xlocater = MinuteLocator(byminute=range(0, 60, trade_interval / 60))
             self.xformatter = DateFormatter("%H:%M")
     else:
         if trade_interval < 5:
             self.xlocater = SecondLocator(bysecond=range(0, 60, 12 * trade_interval))
             self.xformatter = DateFormatter("%H:%M:%S")
         else:
             self.xlocater = MinuteLocator(byminute=range(0, 60, trade_interval / 5))
             self.xformatter = DateFormatter("%H:%M")
Exemple #2
0
def plot_traces(sts, labels, title):
    """
    This function plot streams of seismic signals.
    Several streams can be passed to the function for comparison.

    Input parameters
    sts:     List of N streams (Obspy Stream)
    labels:  List of N labels
    title:   Title of figure
    
    """

    rc('font', size=12.0)

    fig, ax = plt.subplots(sts[0].count(),
                           1,
                           sharex=True,
                           sharey=True,
                           figsize=(10, 12))
    ax[0].set_title(title)

    # Plot each trace of each stream
    for st, label in zip(sts, labels):
        for itr, tr in enumerate(st):
            ilabel = tr.stats.station + '.' + tr.stats.channel[
                2] + ' - ' + label
            ax[itr].grid('on', which='both')
            ax[itr].plot(tr.times('matplotlib'), tr.data, label=ilabel)
            ax[itr].ticklabel_format(style='sci', axis='y', scilimits=(0, 0))
            if itr is not 0:
                ax[itr].yaxis.get_offset_text().set_visible(False)
            ax[itr].set(ylabel='$v_Z$ (m/s)')
            ax[itr].legend(loc=1)

    ax[itr].set(xlabel='Time (s)')
    # Bring subplots close to each other.
    fig.subplots_adjust(hspace=0.1)
    # Hide x labels and tick labels for all but bottom plot.
    for axi in ax:
        axi.label_outer()
    # Format time axis
    if st[0].stats.npts * st[0].stats.delta > 80:
        plt.gca().xaxis.set_minor_locator(
            SecondLocator(bysecond=range(10, 60, 10)))
    else:
        plt.gca().xaxis.set_minor_locator(
            SecondLocator(bysecond=range(5, 60, 5)))
    plt.gca().xaxis.set_minor_formatter(DateFormatter("%S''"))
    plt.gca().xaxis.set_major_locator(MinuteLocator(byminute=range(0, 60, 1)))
    plt.gca().xaxis.set_major_formatter(DateFormatter('%H:%M:%S'))

    plt.show()
Exemple #3
0
def date_handler(time_data, ax, time_frame):

    ax.xaxis.set_major_locator(ticker.MaxNLocator(nbins=8))

    if time_frame == 'year':
        ax.xaxis.set_major_formatter(DateFormatter('%Y'))

    elif time_frame == 'month':
        ax.xaxis.set_major_locator(MonthLocator(bymonth=range(1, 13), interval=_time_freq(time_data, 8, 30)))
        ax.xaxis.set_major_formatter(DateFormatter('%Y-%m'))

    elif time_frame == 'day':
        ax.xaxis.set_major_locator(DayLocator(bymonthday=range(1, 32), interval=_time_freq(time_data, 8, 1)))
        ax.xaxis.set_major_formatter(DateFormatter('%Y-%m-%d'))

    elif time_frame == 'hour':
        ax.xaxis.set_major_locator(HourLocator(byhour=range(0, 24, 4)))
        ax.xaxis.set_major_formatter(DateFormatter('%H:%M'))

    elif time_frame == 'minute':
        ax.xaxis.set_major_locator(MinuteLocator(byminute=range(0, 60, 1), interval=60))
        ax.xaxis.set_major_formatter(DateFormatter('%H:%M'))

    elif time_frame == 'second':
        ax.xaxis.set_major_locator(SecondLocator(bysecond=range(0, 60, 1), interval=10))
        ax.xaxis.set_major_formatter(DateFormatter('%M:%S'))
    def __init__(self):

        self.fig = Figure()

        self.ax = self.fig.add_subplot(111)

        FigureCanvas.__init__(self, self.fig)

        FigureCanvas.setSizePolicy(self, QtGui.QSizePolicy.Expanding,
                                   QtGui.QSizePolicy.Expanding)

        FigureCanvas.updateGeometry(self)

        self.ax.set_xlabel("time of data generator")

        self.ax.set_ylabel('random data value')

        self.ax.legend()

        self.ax.set_ylim(Y_MIN, Y_MAX)

        self.ax.xaxis.set_major_locator(
            MinuteLocator())  # every minute is a major locator

        self.ax.xaxis.set_minor_locator(SecondLocator(
            [10, 20, 30, 40, 50]))  # every 10 second is a minor locator

        self.ax.xaxis.set_major_formatter(
            DateFormatter('%H:%M:%S'))  # tick label formatter

        self.curveObj = None  # draw object
    def plot(self, datax, datay):
        if self.curveObj is not None:
            self.fig.clf()
            self.ax = self.fig.add_subplot(111)
            self.fig.suptitle(self.title)  # set title
            self.ax.set_xlabel("time")
            self.ax.set_ylabel(self.valueName)
            self.ax.legend()
            # self.ax.set_ylim(Y_MIN, Y_MAX)
            self.ax.xaxis.set_major_locator(MinuteLocator())  # every minute is a major locator
            self.ax.xaxis.set_minor_locator(SecondLocator([5, 10, 15, 20, 25]))  # every 10 second is a minor locator
            self.ax.xaxis.set_major_formatter(DateFormatter('%H:%M:%S'))  # tick label formatter


        self.curveObj, = self.ax.plot_date(np.array(datax), np.array(datay), 'bo-')
        # else:
        #     # update data of draw object
        #     self.curveObj.set_data(np.array(datax), np.array(datay))
        #     # update limit of X axis,to make sure it can move
        #     self.ax.set_xlim(datax[0], datax[-1])
        ticklabels = self.ax.xaxis.get_ticklabels()
        for tick in ticklabels:
            tick.set_rotation(25)

        self.draw()
Exemple #6
0
    def __init__(self):

        self.fig = Figure()

        self.ax = self.fig.add_subplot(
            111, facecolor='#000000')  # facecolor设置图表背景颜色(or #FFDAB9)

        FigureCanvas.__init__(self, self.fig)

        FigureCanvas.setSizePolicy(self, QtWidgets.QSizePolicy.Expanding,
                                   QtWidgets.QSizePolicy.Expanding)

        FigureCanvas.updateGeometry(self)

        # self.ax.set_xlabel("time of data generator")

        self.ax.grid(True)  # 显示网格

        self.ax.set_ylabel('Accuracy')

        self.ax.legend()

        self.ax.set_ylim(Y_MIN, Y_MAX)

        self.ax.xaxis.set_major_locator(
            MinuteLocator())  # every minute is a major locator

        self.ax.xaxis.set_minor_locator(SecondLocator(
            [10, 20, 30, 40, 50]))  # every 10 second is a minor locator

        self.ax.xaxis.set_major_formatter(
            DateFormatter('%H:%M:%S'))  # tick label formatter

        self.curveObj = None  # draw object
Exemple #7
0
 def set_time_labels(self, labels, fmt, maj_int, min_int):
     default = self.axis.get('default')
     default.xaxis.set_major_locator(MinuteLocator(interval=maj_int))
     default.xaxis.set_minor_locator(SecondLocator(interval=min_int))
     if len(default.xaxis.get_major_ticks()) < len(labels):
         labels.pop(0)
     default.set_xticklabels(
         [d != ' ' and d.strftime(fmt) or '' for d in labels])
Exemple #8
0
def timeticks(tdiff):
    """
    NOTE do NOT use "interval" or ticks are misaligned!  use "bysecond" only!
    """
    if isinstance(tdiff, xarray.DataArray):  # len==1
        tdiff = timedelta(seconds=tdiff.values / np.timedelta64(1, "s"))

    assert isinstance(tdiff, timedelta), "expecting datetime.timedelta"

    if tdiff > timedelta(hours=2):
        return None, None

    elif tdiff > timedelta(minutes=20):
        return MinuteLocator(byminute=range(0, 60, 5)), MinuteLocator(
            byminute=range(0, 60, 2))

    elif (timedelta(minutes=10) < tdiff) & (tdiff <= timedelta(minutes=20)):
        return MinuteLocator(byminute=range(0, 60, 2)), MinuteLocator(
            byminute=range(0, 60, 1))

    elif (timedelta(minutes=5) < tdiff) & (tdiff <= timedelta(minutes=10)):
        return MinuteLocator(byminute=range(0, 60, 1)), SecondLocator(
            bysecond=range(0, 60, 30))

    elif (timedelta(minutes=1) < tdiff) & (tdiff <= timedelta(minutes=5)):
        return SecondLocator(bysecond=range(0, 60, 30)), SecondLocator(
            bysecond=range(0, 60, 10))

    elif (timedelta(seconds=30) < tdiff) & (tdiff <= timedelta(minutes=1)):
        return SecondLocator(bysecond=range(0, 60, 10)), SecondLocator(
            bysecond=range(0, 60, 2))

    else:
        return SecondLocator(bysecond=range(0, 60, 2)), SecondLocator(
            bysecond=range(0, 60, 1))
Exemple #9
0
def timeticks(tdiff: timedelta):
    assert isinstance(tdiff, timedelta)

    if tdiff > timedelta(minutes=20):
        return MinuteLocator(interval=5)
    elif (timedelta(minutes=1) < tdiff) & (tdiff <= timedelta(minutes=20)):
        return MinuteLocator(interval=1)
    else:
        return SecondLocator(interval=5)
Exemple #10
0
def plot_ts(dsd,
            varname,
            date_format="%H:%M",
            tz=timezone.utc,
            x_min_tick_format="hour",
            title=None,
            ax=None,
            fig=None,
            **kwargs):
    """
    Time series plot of variable.

    Parameters
    ----------
    dsd : dict
        PyDSD dictionary.
    varname : str or list
        Variable name(s) to plot.
    date_format : str
        Timestring format characters.
    tz : str
        Time zone to uses, see datetime module.
    x_min_tick_format : str
        Minor tick formatting, 'second','minute','hour','day' supported
    title : str
    ax : Matplotlib Axis instance
    fig : Matplotlib Figure instance
    kwkargs : Keyword arguments to pass to pcolormesh
    """
    ax = parse_ax(ax)
    fig = parse_ax(fig)

    x_fmt = DateFormatter(date_format, tz=tz)
    sample_time = [
        datetime.datetime.fromtimestamp(i) for i in dsd.time['data'].filled()
    ]
    ax.plot_date(sample_time, dsd.fields[varname]["data"], **kwargs)

    ax.xaxis.set_major_formatter(x_fmt)
    if x_min_tick_format == "second":
        ax.xaxis.set_minor_locator(SecondLocator())
    elif x_min_tick_format == "minute":
        ax.xaxis.set_minor_locator(MinuteLocator())
    elif x_min_tick_format == "hour":
        ax.xaxis.set_minor_locator(HourLocator())
    elif x_min_tick_format == "day":
        ax.xaxis.set_minor_locator(DayLocator())

    if title is not None:
        ax.set_title(title)
    else:
        plt.title(dsd.fields[varname]['long_name'])

    plt.ylabel(dsd.fields[varname]['units'])
    plt.xlabel('Time')
    return fig, ax
Exemple #11
0
 def __init__(self):
     # 创建一个Figure,注意:该Figure为matplotlib下的.figure,不是matplotlib.pyplot下面的figure
     self.figure = Figure()
     FigureCanvas.__init__(self, self.figure)  # 初始化父类
     FigureCanvas.setSizePolicy(self, QSizePolicy.Expanding,
                                QSizePolicy.Expanding)
     self.ax = self.figure.add_subplot(
         111)  # 创建一个新的 1 * 1 的子图,接下来的图样绘制在其中的第 1 块(也是唯一的一块)
     self.ax.set_xlabel('Time')  # 设置x坐标轴名
     self.ax.grid(True)  # 为坐标系设置网格
     self.ax.xaxis.set_major_locator(SecondLocator([0, 20,
                                                    40]))  # 主刻度,10s间隔
     self.ax.xaxis.set_minor_locator(
         SecondLocator([0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50,
                        55]))  # 次刻度,5s间隔
     self.ax.xaxis.set_major_formatter(
         DateFormatter('%H:%M:%S'))  # x坐标主刻度名格式
     self.curveObj1 = None  # draw object
     self.curveObj2 = None
     self.curveObj3 = None
Exemple #12
0
def pickTW(tr):
    
    """
    This function allows to interactively pick times on the signal. 

    Input parameters
    tr:  Seismic signal (Obspy Trace)

    """
    
    rc('font', size=12.0)

    # Plot seismic trace
    fig = plt.figure(figsize=(10,4))
    ax  = fig.add_subplot(111)
    title = ('Successively select start and end time of signal with right mouse button.')
    label = tr.stats.station+'.'+tr.stats.channel[2]
    ax.set_title(title)
    ax.grid()
    ax.plot(tr.times('matplotlib'), tr.data,label=label)
    ax.ticklabel_format(style='sci', axis='y', scilimits=(0,0))
    ax.legend(loc=1)
    ax.set_xlabel('Time (s)')
    ax.set_ylabel('$v_Z$ (m/s)')
    # Format time axis
    if tr.stats.npts*tr.stats.delta > 80 :
        plt.gca().xaxis.set_minor_locator(
                SecondLocator(bysecond=range(10,60,10)) )
    else:
        plt.gca().xaxis.set_minor_locator(
                SecondLocator(bysecond=range( 5,60, 5)) )
    plt.gca().xaxis.set_minor_formatter( DateFormatter("%S''") )
    plt.gca().xaxis.set_major_locator( MinuteLocator(byminute=range( 0,60, 1)) )
    plt.gca().xaxis.set_major_formatter( DateFormatter('%H:%M:%S') )
    
    # Start picking
    cid = fig.canvas.mpl_connect('button_press_event', onclick)

    plt.show()

    return()
Exemple #13
0
def timelbl(time, ax, tctime):
    """improve time axis labeling"""
    if time.size < 200:
        ax.xaxis.set_minor_locator(SecondLocator(interval=10))
        ax.xaxis.set_minor_locator(SecondLocator(interval=2))
    elif time.size < 500:
        ax.xaxis.set_minor_locator(MinuteLocator(interval=10))
        ax.xaxis.set_minor_locator(MinuteLocator(interval=2))

    # ax.axvline(tTC[tReqInd], color='white', linestyle='--',label='Req. Time')
    if (tctime["tstartPrecip"] >= time[0]) & (tctime["tstartPrecip"] <=
                                              time[-1]):
        ax.axvline(tctime["tstartPrecip"],
                   color="red",
                   linestyle="--",
                   label="Precip. Start")
    if (tctime["tendPrecip"] >= time[0]) & (tctime["tendPrecip"] <= time[-1]):
        ax.axvline(tctime["tendPrecip"],
                   color="red",
                   linestyle="--",
                   label="Precip. End")
Exemple #14
0
def plot_trace(tr, event):

    """
    This function plots a single seismic trace.

    Input parameters
    tr:      Seismic signal (Obspy Trace)
    
    """

    rc('font', size=12.0)
    
    fig = plt.figure(figsize=(10,4))
    ax  = fig.add_subplot(111)
    ax.set_title('Seismic signal and picked time window (red dashed lines)')
   
    # Plot each trace of each stream
    label = tr.stats.station+'.'+tr.stats.channel[2]
    ax.grid(which='both')
    ax.plot(tr.times('matplotlib'), tr.data, lw=0.8, label=label)
    ax.ticklabel_format(style='sci', axis='y', scilimits=(0,0))
    if os.path.isfile('pickedTW_'+event+'.txt'):
        pickTW = np.loadtxt('pickedTW_'+event+'.txt')
        ax.axvline(pickTW[0],color='C3',linestyle='--')
        ax.axvline(pickTW[1],color='C3',linestyle='--')
    ax.legend(loc=1)
    ax.set_xlabel('Time (s)')
    ax.set_ylabel('$v_Z$ (m/s)')
    # Format time axis
    if tr.stats.npts*tr.stats.delta > 80 :
        plt.gca().xaxis.set_minor_locator( 
                SecondLocator(bysecond=range(10,60,10)) )
    else:
        plt.gca().xaxis.set_minor_locator( 
                SecondLocator(bysecond=range( 5,60, 5)) )
    plt.gca().xaxis.set_minor_formatter( DateFormatter("%S''") )
    plt.gca().xaxis.set_major_locator( MinuteLocator(byminute=range( 0,60, 1)) )
    plt.gca().xaxis.set_major_formatter( DateFormatter('%H:%M:%S') )
    
    plt.show()
Exemple #15
0
def plotTimes(group_id, data):
    formatter = DateFormatter('%m-%d-%y')
    x = data["x"]
    y = data["y"]
    _, axes = plt.subplots(1, data["years"], sharey=True)
    if len(data['boundaries']) == 0:
        sendMessage(group_id, text=f'{data["name"]} has no 5k races recorded.')
        return False

    if data["years"] == 1:
        axes = [axes]
    if DEBUG:
        print(f'Starting plot for {data["name"]}... ',end='')
    for i in range(data['years']):
        axes[i].plot(x, y)
        if i < data['years'] - 1:
            axes[i].spines['right'].set_visible(False)
        if i > 0:
            axes[i].spines['left'].set_visible(False)
            axes[i].yaxis.set_ticks_position('none')
        axes[i].set_xlim(data['boundaries'][i]['start'],data['boundaries'][i]['end'])
        plt.sca(axes[i])
        plt.xticks(rotation=65)
        plt.rc('axes', labelsize=8)
        axes[i].xaxis.set_major_formatter(formatter)
        axes[i].grid(linestyle="dashed",linewidth=0.5)
        loc = SecondLocator(interval=15)
        axes[i].yaxis.set_major_locator(loc)
        axes[i].yaxis.set_major_formatter(DateFormatter('%M:%S'))
        for label in (axes[i].get_xticklabels()):
            label.set_fontsize(7)

        #axes[i].get_xticklabels().set_fontsize(10)
    if DEBUG:
        print('done.')
    try:
        plt.sca(axes[0])
    except IndexError:
        sendMessage(group_id, text=f"{data['name']} has no times recorded.")
        return False
    plt.xlabel('Date')
    plt.ylabel('5k Time')
    plt.sca(axes[int(data['years']/2)])
    plt.title(data['name'])
    if DEBUG:
        print('Try to save figure... ',end='')
    plt.savefig('plot.png', format="png")
    plt.close()
    if DEBUG:
        print('done.')

    return True
Exemple #16
0
def plotTimeline(a, filename):
    # Converts str into a datetime object.
    conv = lambda s: dt.datetime.strptime(s, '%H:%M:%S:%f')

    # Use numpy to read the data in.
    data = np.genfromtxt(a, converters={1: conv, 2: conv}, \
                     names=['caption', 'start', 'stop', 'state'], \
                     dtype=None, delimiter=",")
    cap, start, stop = data['caption'], data['start'], data['stop']

    # Check the status, because we paint all lines with the same color
    # together
    is_ok = (data['state'] == 'OK')
    not_ok = np.logical_not(is_ok)

    # Get unique captions and there indices and the inverse mapping
    captions, unique_idx, caption_inv = np.unique(cap, 1, 1)

    # Build y values from the number of unique captions.
    y = (caption_inv + 1) / float(len(captions) + 1)

    # Plot ok tl black
    timelines(y[is_ok], start[is_ok], stop[is_ok], 'k')
    # Plot fail tl red
    timelines(y[not_ok], start[not_ok], stop[not_ok], 'r')

    # Setup the plot
    ax = plt.gca()
    fig = ax.get_figure()
    fig.set_figheight(6)
    fig.set_figwidth(18)
    ax.xaxis_date()
    myFmt = DateFormatter('%H:%M:%S')
    ax.xaxis.set_major_formatter(myFmt)
    ax.xaxis.set_major_locator(
        SecondLocator(interval=10))  # used to be SecondLocator(0, interval=20)

    plt.axhspan(0.19, 1, facecolor='0.8', alpha=0.5)

    # To adjust the xlimits a timedelta is needed.
    delta = (stop.max() - start.min()) / 10

    plt.yticks(y[unique_idx], captions, size=14)
    # plt.ylim(0,1)
    plt.tight_layout()
    plt.gcf().subplots_adjust(bottom=0.1)

    plt.xticks(size=14)
    plt.xlim(start.min() - delta, stop.max() + delta)
    plt.xlabel('Timeline', size=17)
    plt.savefig(filename, format='eps', dpi=200)
Exemple #17
0
def plot_timeSeries(x, y):
    days = DayLocator()
    hours = HourLocator()
    minutes = MinuteLocator()
    seconds = SecondLocator()
    ax = plt.subplot(111)

    plt.xticks(rotation=45)
    ax.xaxis.set_major_locator(days)
    ax.xaxis.set_major_formatter(mdate.DateFormatter('%Y-%m-%d'))
    # ax.xaxis.set_minor_locator(hours)
    # ax.xaxis.set_minor_formatter(mdate.DateFormatter('%H'))
    plt.plot(x, y)
    plt.show()
Exemple #18
0
def plot_ts(dsd,
            varname,
            date_format='%H:%M',
            tz=None,
            x_min_tick_format='minute',
            title=None,
            ax=None,
            fig=None,
            **kwargs):
    """
    Time series plot of variable.

    Parameters
    ----------
    dsd : dict
        PyDSD dictionary.
    varname : str or list
        Variable name(s) to plot.
    date_format : str
        Timestring format characters.
    tz : str
        Time zone to uses, see datetime module.
    x_min_tick_format : str
        Minor tick formatting, 'second','minute','hour','day' supported
    title : str
    ax : Matplotlib Axis instance
    fig : Matplotlib Figure instance
    kwkargs : Keyword arguments to pass to pcolormesh
    """
    ax = parse_ax(ax)
    fig = parse_ax(fig)

    x_fmt = DateFormatter(date_format, tz=tz)

    ax.plot_date(dsd.time['data'], dsd.fields[varname]['data'], **kwargs)

    ax.xaxis.set_major_formatter(x_fmt)
    if x_min_tick_format == 'second':
        ax.xaxis.set_minor_locator(SecondLocator())
    elif x_min_tick_format == 'minute':
        ax.xaxis.set_minor_locator(MinuteLocator())
    elif x_min_tick_format == 'hour':
        ax.xaxis.set_minor_locator(HourLocator())
    elif x_min_tick_format == 'day':
        ax.xaxis.set_minor_locator(DayLocator())

    if title is not None:
        ax.set_title(title)
    return fig, ax
Exemple #19
0
def live_traffic():
    with get_conn() as conn:
        cur = conn.cursor(cursor_factory=psycopg2.extras.DictCursor)

        destination_history_query = """
            SELECT * FROM traffic WHERE recorded_at >= now() - INTERVAL '10 minutes';
        """

        cur.execute(destination_history_query)

        times = cur.fetchall()

    fig = Figure(figsize=(30, 8),
                 dpi=80,
                 facecolor='w',
                 edgecolor='k',
                 tight_layout=True)
    ax = fig.add_subplot(111)

    begin_times = [row['recorded_at'] for row in times]

    upload = [row['upload'] for row in times]
    ax.plot_date(x=begin_times, y=upload, label='upload', linestyle='solid')

    download = [row['download'] for row in times]
    ax.plot_date(x=begin_times,
                 y=download,
                 label='download',
                 linestyle='solid')

    ax.set_xlabel('Time')
    ax.set_ylabel('Bandwidth')
    ax.set_ylim(bottom=0)

    ax.xaxis_date()
    my_fmt = DateFormatter('%H:%M')
    ax.xaxis.set_major_formatter(my_fmt)
    ax.xaxis.set_major_locator(SecondLocator(interval=60))
    ax.legend()
    ax.grid()

    png_output = io.BytesIO()

    fig.set_canvas(FigureCanvasAgg(fig))
    fig.savefig(png_output, transparent=True, format='png')

    response = make_response(png_output.getvalue())
    response.headers['content-type'] = 'image/png'
    return response
def plot(start: "np.ndarray[datetime]", stop: "np.ndarray[datetime]",
         state: "np.ndarray[str]", cap: "np.ndarray[str]"):
    """Originally based on: https://stackoverflow.com/a/7685336/965332"""
    # Get unique captions, their indices, and the inverse mapping
    captions, unique_idx, caption_inv = np.unique(cap, 1, 1)

    # Build y values from the number of unique captions
    y = (caption_inv + 1) / float(len(captions) + 1)

    # Build colors
    states, _, states_inv = np.unique(state, 1, 1)
    cmap = plt.get_cmap('tab10')
    colors = cmap(np.linspace(0, 1, len(states)))

    # Plot function
    def timelines(y, xstart, xstop, color):
        """Plot timelines at y from xstart to xstop with given color."""
        plt.hlines(y, same_date(xstart), same_date(xstop), color, lw=12)

    timelines(y, start, stop, colors[states_inv])

    # Setup the plot
    plt.title("Timeline")
    ax = plt.gca()

    # Create the legend
    plt.legend(handles=[
        mpatches.Patch(color=colors[i], label=s) for i, s in enumerate(states)
    ])

    # Setup the xaxis
    ax.xaxis_date()
    ax.xaxis.set_major_formatter(DateFormatter('%H:%M'))
    ax.xaxis.set_major_locator(SecondLocator(
        interval=60 * 60))  # used to be SecondLocator(0, interval=20)
    plt.xlabel('Time')
    plt.setp(plt.gca().get_xticklabels(),
             rotation=45,
             horizontalalignment='right')
    plt.xlim(datetime(1900, 1, 1, 0), datetime(1900, 1, 1, 23, 59))

    # Setup the yaxis
    plt.ylabel('Date')
    plt.yticks(y[unique_idx], captions)
    plt.ylim(0, 1)

    plt.show()
 def __init__(self,title,valueName):
     self.fig = Figure()
     self.ax = self.fig.add_subplot(111)
     self.title = title
     self.valueName = valueName
     FigureCanvas.__init__(self, self.fig)
     FigureCanvas.setSizePolicy(self, QSizePolicy.Expanding, QSizePolicy.Expanding)
     FigureCanvas.updateGeometry(self)
     self.fig.suptitle(self.title)  #set title
     self.ax.set_xlabel("time")
     self.ax.set_ylabel(self.valueName)
     self.ax.legend()
     #self.ax.set_ylim(Y_MIN, Y_MAX)
     self.ax.xaxis.set_major_locator(MinuteLocator())  # every minute is a major locator
     self.ax.xaxis.set_minor_locator(SecondLocator([5, 10, 15, 20, 25]))  # every 10 second is a minor locator
     self.ax.xaxis.set_major_formatter(DateFormatter('%H:%M:%S'))  # tick label formatter
     self.curveObj = None  # draw object
Exemple #22
0
 def read_data(self):
     dataframe = pd.read_csv(filepath_or_buffer=self.inputfile)
     real_time = np.array(dataframe["real_time"])
     grTempOutdoor_1sec = np.array((dataframe["grTempOutdoor_1sec"]))
     # print real_time
     real_time_modified = []
     for item in real_time:
         time_item = datetime.datetime.strptime(item, "%Y/%m/%d %H:%M:%S")
         real_time_modified.append(time_item)
     print real_time_modified
     # print grTempOutdoor_1sec
     # plt.plot(real_time,grTempOutdoor_1sec)
     # grTempHub_1sec.plot()
     minutes = MinuteLocator()
     seconds = SecondLocator()
     ax = plt.subplot(111)
     ax.xaxis.set_major_locator(minutes)
     ax.xaxis.set_major_formatter(mdate.DateFormatter('%Y-%m-%d %H:%M:%S'))
     plt.xticks(rotation=90)
     plt.plot(real_time_modified, grTempOutdoor_1sec)
     plt.show()
Exemple #23
0
    def chartInit(self,chart,timescale=1.0):
        u"""根据timescale设置K线图和成交量图的label,xLocator等参数"""
        chart.grid(color='w')
        
        for tick in chart.yaxis.get_major_ticks():
            tick.label1On = True
            tick.label2On = True
            tick.label1.set_fontsize(9)
            tick.label2.set_fontsize(9)

        if timescale <= 10:
            chart.xaxis.set_major_locator(SecondLocator([0,30]))    
            chart.xaxis.set_major_formatter(DateFormatter('%H:%M:%S'))
        elif timescale <= 60:
            chart.xaxis.set_major_locator(MinuteLocator([0,5,10,15,20,25,30,35,40,45,50,55]))    
            chart.xaxis.set_major_formatter(DateFormatter('%H:%M'))
        elif timescale <= 1800:
            chart.xaxis.set_major_locator(HourLocator([0,3,6,9,12,15,18,21]))    
            chart.xaxis.set_major_formatter(DateFormatter('%H:%M'))
        else :
            chart.xaxis.set_major_locator(HourLocator([0,12]))    
            chart.xaxis.set_major_formatter(DateFormatter('%H:%M'))
Exemple #24
0
    def init():
        ax.clear()
        """ Initialize plot window and static plot elements """
        # Configure x-axis and y-axis
        ax.xaxis.set_major_locator(MinuteLocator())
        ax.xaxis.set_major_formatter(DateFormatter(time_format))
        ax.xaxis.set_minor_locator(SecondLocator(bysecond=[15, 30, 45]))
        ax.yaxis.tick_right()
        ax.yaxis.set_major_formatter(FormatStrFormatter('%.5f'))

        # Set colors
        fig.set_facecolor(colortheme['bg2'])
        ax.set_facecolor(colortheme['bg1'])
        for child in ax.get_children():
            if isinstance(child, spines.Spine):
                child.set_color(colortheme['fg1'])
        ax.xaxis.grid(color=colortheme['fg2'], linewidth=0.2)
        ax.yaxis.grid(color=colortheme['fg2'], linewidth=0.2)
        ax.tick_params(axis='both', colors=colortheme['fg1'])

        # Put more space below and above plot
        ax.set_ymargin(0.8)

        # Create title
        if title:
            ax.annotate(title,
                        xy=(0.02, 0.945),
                        xycoords='axes fraction',
                        ha='left',
                        color=colortheme['fg1'])
        """ Determine number of plot lines and set default values 
            for line color, style and width """
        # Generate one tick to find out how many lines must be plotted
        tick = f()
        num_lines = len(tick) - 1

        # Set default values for lcolors, lstyles, lwidths and llabels
        lcols = lcolors if lcolors else [colortheme['fg1']] * num_lines
        lstys = lstyles if lstyles else ['-'] * num_lines
        lwids = lwidths if lwidths else [1.0] * num_lines

        # Check that user inputs have correct length
        assert (len(lcols) == num_lines) & \
               (len(lstys) == num_lines) & \
               (len(lwids) == num_lines) & \
               (not llabels or len(llabels) == num_lines), \
            'lcolors, lstyles, lwidths and llabels must either be unspecified' \
            'or their length must equal the number of plot lines'
        """ Initialize interactive plot elements """
        # Initialize x-axis
        ax.set_xlim(tick[0], tick[0] + timedelta(seconds=period + padding))

        # Initialize date textbox below x-axis
        date_text = ax.annotate('',
                                xy=(0.5, -0.11),
                                xycoords='axes fraction',
                                ha='center',
                                color=colortheme['fg1'])
        timeplot.texts.append(date_text)

        # Initialize current tick value on y-axis
        value_text = ax.annotate('',
                                 xy=(1, 1),
                                 xycoords=ax.get_yaxis_transform(),
                                 xytext=(7, 0),
                                 textcoords='offset points',
                                 ha='left',
                                 va='center',
                                 color=colortheme['fg1'],
                                 bbox=dict(edgecolor=colortheme['fg1'],
                                           facecolor=colortheme['bg1']))
        timeplot.texts.append(value_text)

        # Initialize plot lines
        for i in range(num_lines):
            line = ax.plot([], [], c=lcols[i], ls=lstys[i], lw=lwids[i])[0]
            if llabels:
                line.set_label(llabels[i])
            timeplot.lines.append(line)
        """ Create legend """
        if llabels:
            handles = [
                line for line, label in zip(timeplot.lines, llabels) if label
            ]
            plt.legend(handles=handles, loc='lower left')

        return animate(tick)
Exemple #25
0
#Plot function
def timelines(y, xstart, xstop, color='b'):
    """Plot timelines at y from xstart to xstop with given color."""
    plt.hlines(y, xstart, xstop, color, lw=4)
    plt.scatter(xstart, y, s=100, c=color, marker=".", lw=2, edgecolor=color)
    # plt.vlines(xstart, y+0.03, y-0.03, color, lw=2)
    plt.scatter(xstop, y, s=100, c=color, marker=".", lw=2, edgecolor=color)
    # plt.vlines(xstop, y+0.03, y-0.03, color, lw=2)


#Plot ok tl black
timelines(y[is_ok], start[is_ok], stop[is_ok], 'k')
#Plot fail tl red
timelines(y[not_ok], start[not_ok], stop[not_ok], 'r')

#Setup the plot
ax = plt.gca()
ax.xaxis_date()
myFmt = DateFormatter('%H:%M:%S')
ax.xaxis.set_major_formatter(myFmt)
ax.xaxis.set_major_locator(
    SecondLocator(interval=20))  # used to be SecondLocator(0, interval=20)

#To adjust the xlimits a timedelta is needed.
delta = (stop.max() - start.min()) / 10

plt.yticks(y[unique_idx], captions)
plt.ylim(0, 1)
plt.xlim(start.min() - delta, stop.max() + delta)
plt.xlabel('Time')
plt.show()
Exemple #26
0
def plot_cpid(ax, times, cpid, mode, cpidchange_lims):
    """Plots control program ID (cpid) panel at position pos.

    Parameters
    ----------
    ax :
        a MPL axis object to plot to
    times : list
        a list of the times of the beam soundings
    cpid : list
        a list of the cpids of the beam soundings.
    mode : list
        a list of the ifmode param
    cpidchange_lims : int
        Limit on the number of times the cpid can change


    Returns
    -------
    Nothing.

    Example
    -------
        plot_cpid(ax,times,cpid,mode, cpidchange_lims=10)

    Written by AJ 20121002
    Modified by ASR 20150916

    """
    from davitpy import pydarn
    from matplotlib.ticker import MultipleLocator
    from matplotlib.dates import SecondLocator
    from matplotlib.dates import date2num
    from datetime import timedelta
    import numpy as np
    oldCpid = -9999999

    # Format the yaxis.
    ax.yaxis.tick_left()
    ax.yaxis.set_tick_params(direction='out')
    ax.set_ylim(bottom=0, top=1)
    ax.yaxis.set_minor_locator(MultipleLocator(1))
    ax.yaxis.set_tick_params(direction='out', which='minor')

    # Draw the axes.
    ax.plot_date(date2num(times),
                 np.arange(len(times)),
                 fmt='w',
                 tz=None,
                 xdate=True,
                 ydate=False,
                 alpha=0.0)

    # Initialize CPID change counter
    cpid_change = 0
    # Label the CPIDs.
    for i in range(0, len(times)):
        if (cpid[i] != oldCpid):
            cpid_change += 1
            # If the cpid is changing too much, it won't be readible
            if (cpid_change >= cpidchange_lims):
                # Clear the current axis
                ax.cla()
                # Kick out error messages
                diff_time = (times[-1] - times[0]).total_seconds() / 2.
                cpid_time = times[0] + timedelta(seconds=diff_time)
                temp = ', '.join([str(x) for x in list(set(cpid))])
                cpid_text = 'CPIDs: ' + temp
                ax.text(cpid_time,
                        .5,
                        cpid_text,
                        ha='center',
                        va='center',
                        size=10)
                logging.error('CPID is changing too frequently to be '
                              'legibly printed. Please consider using '
                              'radDataOpen cp param. CPIDs found: ' +
                              str(list(set(cpid))))
                break
            ax.plot_date(
                [date2num(times[i]), date2num(times[i])], [0, 1],
                fmt='k-',
                tz=None,
                xdate=True,
                ydate=False)
            oldCpid = cpid[i]
            s = ' ' + pydarn.radar.radUtils.getCpName(oldCpid)
            istr = ' '
            if (mode[i] == 1): istr = ' IF'
            if (mode == 0): istr = ' RF'
            ax.text(times[i],
                    .5,
                    ' ' + str(oldCpid) + s + istr,
                    ha='left',
                    va='center',
                    size=10)

    # Format the xaxis.
    xmin = date2num(times[0])
    xmax = date2num(times[len(times) - 1])
    xrng = (xmax - xmin)
    inter = int(round(xrng / 6. * 86400.))
    inter2 = int(round(xrng / 24. * 86400.))
    ax.xaxis.set_minor_locator(SecondLocator(interval=inter2))
    ax.xaxis.set_major_locator(SecondLocator(interval=inter))

    for tick in ax.xaxis.get_major_ticks():
        tick.label.set_fontsize(0)

    # Identify the CPID axis with a label.
    fig = ax.get_figure()
    bb = ax.get_position()
    x0 = bb.x0
    y0 = bb.y0
    height = bb.height
    width = bb.width
    pos = [x0, y0, width, height]
    fig.text(pos[0] - .07,
             pos[1] + pos[3] / 2.,
             'CPID',
             ha='center',
             va='center',
             size=8.5,
             rotation='vertical')
    ax.set_yticks([])
Exemple #27
0
matplotlib.rc('font', **font_base)
matplotlib.rc('xtick', labelsize=12)
# matplotlib.rc('xtick', labelsize=30)
matplotlib.rc('ytick', labelsize=16)
# matplotlib.rc('ytick', labelsize=30)
# matplotlib.rc('legend', fontsize=12)
# matplotlib.rc('legend', labelspacing=0.2)

# Artist shape used by annotations
el = Ellipse((2, -1), 0.5, 0.5)

# Formatter to change x values ticks
minutes = MinuteLocator(interval=4)
minutes_formatter = DateFormatter("%M:%S")

secondes = SecondLocator(interval=10)
secondes_formatter = DateFormatter("%M:%S")

#######################################
#    Classes, Methods, Functions :    #
#######################################


def convert_to_datetime(step, start=datetime.datetime(2014, 1, 1)):
    """
      This parser convert to a real datetime format
    """
    for el in step:
        yield start + datetime.timedelta(seconds=int(el))

Exemple #28
0
def graph(destination):
    with get_conn() as conn:
        cur = conn.cursor(cursor_factory=psycopg2.extras.DictCursor)

        destination_history_query = """
            WITH intervals AS (
                SELECT
                  begin_time,
                  LEAD(begin_time)
                  OVER (
                    ORDER BY begin_time ) AS end_time
                FROM
                      generate_series(
                          now() - INTERVAL '1 hours',
                          now(),
                          INTERVAL '1 minutes'
                      ) begin_time
            )
            SELECT
              i.begin_time AT TIME ZONE 'Europe/Berlin' AS begin_time,
              i.end_time AT TIME ZONE 'Europe/Berlin' AS end_time,
              p.destination,
              count(p.pingtime),
              round(avg(p.pingtime),2) AS avg,
              max(p.pingtime),
              min(p.pingtime)
            FROM intervals i LEFT JOIN pings p
            ON p.recorded_at >= i.begin_time AND
              p.recorded_at < i.end_time
            WHERE 
              i.end_time IS NOT NULL
              AND destination = %s
            GROUP BY i.begin_time, i.end_time, p.destination
            ORDER BY i.begin_time ASC;
        """

        cur.execute(destination_history_query, (destination, ))

        times = cur.fetchall()

    fig = Figure(figsize=(30, 8),
                 dpi=80,
                 facecolor='w',
                 edgecolor='k',
                 tight_layout=True)
    ax = fig.add_subplot(111)

    begin_times = [row['begin_time'] for row in times]

    maxs = [row['max'] for row in times]
    ax.plot_date(x=begin_times, y=maxs, label='max', linestyle='solid')

    avgs = [row['avg'] for row in times]
    ax.plot_date(x=begin_times, y=avgs, label='avg', linestyle='solid')

    mins = [row['min'] for row in times]
    ax.plot_date(x=begin_times, y=mins, label='min', linestyle='solid')

    ax.set_xlabel('Time')
    ax.set_ylabel('Round Trip (ms)')
    ax.set_ylim(bottom=0)

    ax.xaxis_date()
    my_fmt = DateFormatter('%H:%M')
    ax.xaxis.set_major_formatter(my_fmt)
    ax.xaxis.set_major_locator(SecondLocator(interval=60))
    ax.legend()
    ax.grid()

    png_output = io.BytesIO()

    fig.set_canvas(FigureCanvasAgg(fig))
    fig.savefig(png_output, transparent=True, format='png')

    response = make_response(png_output.getvalue())
    response.headers['content-type'] = 'image/png'
    return response
    def plot(self, datax, datay):
        print("Start Plot()")
        self.ax.set_xlabel("time of data generator")
        self.ax.set_ylabel('random data value')
        self.ax.legend()
        self.ax.set_ylim(Y_MIN, Y_MAX)
        self.ax.xaxis.set_major_locator(
            MinuteLocator())  # every minute is a major locator
        self.ax.xaxis.set_minor_locator(SecondLocator(
            [10, 20, 30, 40, 50]))  # every 10 second is a minor locator
        self.ax.xaxis.set_major_formatter(
            DateFormatter('%H:%M:%S'))  # tick label formatter
        self.curveObj = None  # draw object

        plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
        plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
        # 有中文出现的情况,需要u'内容'

        plt.xlabel(u'概率(%)')
        plt.ylabel(u'数值')
        plt.title(u'P-III曲线测试点图')

        xaxLabel = [
            0.01, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 30, 40, 50, 60, 70, 80,
            90, 95, 98, 99, 99.5, 99.9, 99.99
        ]
        xaxValuepre = [i / 100 for i in xaxLabel]

        X = scst.norm()
        xaxValue = (X.ppf(xaxValuepre) - X.ppf(0.0001)) / (
            (X.ppf(0.9999) - X.ppf(0.0001))) * 100

        ax = plt.subplot(111)  # 注意:一般都在ax中设置,不再plot中设置

        ValRateX = (X.ppf(ValRate) - X.ppf(0.0001)) / (
            (X.ppf(0.9999) - X.ppf(0.0001))) * 100
        plt.scatter(ValRateX, ValList, marker='o')  # 横坐标根据海森机率格纸要求进行变换

        ax.set_xticks(xaxValue)
        ax.set_xticklabels(xaxLabel)

        from matplotlib.ticker import MultipleLocator, FormatStrFormatter

        ymajorLocator = MultipleLocator(200)  # 将y轴主刻度标签设置为0.5的倍数
        ymajorFormatter = FormatStrFormatter('%1.1f')  # 设置y轴标签文本的格式
        yminorLocator = MultipleLocator(40)  # 将此y轴次刻度标签设置为0.1的倍数
        ax.yaxis.set_major_locator(ymajorLocator)
        ax.yaxis.set_major_formatter(ymajorFormatter)
        ax.yaxis.set_minor_locator(yminorLocator)

        ax.xaxis.grid(True, which='major')  # x坐标轴的网格使用主刻度
        ax.yaxis.grid(True, which='major')

        alpha = 4 / (Cs * Cs)
        beta = 2 / (ValEve * Cv * Cs)
        a0 = ValEve * (1 - 2 * Cv / Cs)

        Y = scst.gamma(alpha)

        def Fip(x):
            return Cs / 2 * Y.ppf(1 - x) - (2 / Cs)

        P3List = np.arange(0, 1, 0.0001).tolist()
        # P3List=[0.00000001]+P3List+[0.99999999999]
        P3XPre = [i for i in P3List]
        P3Y = [(1 + Cv * Fip(i)) * ValEve for i in P3XPre]
        P3X = (X.ppf(P3XPre) - X.ppf(0.0001)) / (
            (X.ppf(0.9999) - X.ppf(0.0001))) * 100
        plt.plot(P3X, P3Y, 'r')

        # G=scst.gumbel_r()               #参数不清楚

        plt.show()

        self.draw()
Exemple #30
0
def draw_axes(myFig,
              times,
              rad,
              cpid,
              bmnum,
              nrang,
              frang,
              rsep,
              bottom,
              yrng=-1,
              coords='gate',
              pos=[.1, .05, .76, .72],
              xtick_size=9,
              ytick_size=9,
              xticks=None,
              axvlines=None):
    """ Draws empty axes for an rti plot.

    Parameters
    ----------
    myFig :
        the MPL figure we are plotting to
    times : list
        a list of datetime objects referencing the beam soundings
    rad : str
        3 letter radar code
    cpid : list
        list of the cpids or the beam soundings
    bmnum : int
        beam number being plotted
    nrang : list
        list of nrang for the beam soundings
    frang : list
        list of frang of the beam soundings
    rsep : list
        list of rsep of the beam soundings
    bottom : bool
        flag indicating if we are at the bottom of the figure
    yrng : Optional[list]
        range of y axis, -1=autoscale (default)
    coords : Optional[ ]
        y axis coordinate system, acceptable values are 'geo',
        'mag', 'gate', 'rng'
    pos : Optional[ ]
        position of the plot
    xtick_size : Optional[ ]
        fontsize of xtick labels
    ytick_size : Optional[ ]
        fontsize of ytick labels
    xticks : Optional[list]
        datetime.datetime objects indicating the location of xticks
    axvlines : Optional[list]
        datetime.datetime objects indicating the location vertical
        lines marking the plot

    Returns
    -------
    ax :
        an axes object

    Example
    -------
        ax = draw_axes(myFig,times,rad,cpid,beam,nrang,frang,rsep,0)

    Written by AJ 20121002
    Modified by ASR 20150917 (refactored)

    """

    from davitpy import pydarn
    from matplotlib.ticker import MultipleLocator, FormatStrFormatter
    from matplotlib.dates import SecondLocator, DateFormatter, date2num
    from matplotlib.lines import Line2D
    import numpy as np

    nrecs = len(times)
    # Add an axes object to the figure.
    ax = myFig.add_axes(pos)
    ax.yaxis.set_tick_params(direction='out')
    ax.xaxis.set_tick_params(direction='out')
    ax.yaxis.set_tick_params(direction='out', which='minor')
    ax.xaxis.set_tick_params(direction='out', which='minor')

    # Draw the axes.
    ax.plot_date(date2num(times),
                 np.arange(len(times)),
                 fmt='w',
                 tz=None,
                 xdate=True,
                 ydate=False,
                 alpha=0.0)

    # Determine the yaxis min/max unless it's been specified
    if (yrng == -1):
        ymin, ymax = 99999999, -999999999
        if (coords != 'gate'):
            oldCpid = -99999999
            for i in range(len(cpid)):
                if (cpid[i] == oldCpid): continue
                oldCpid = cpid[i]
                if (coords == 'geo' or coords == 'mag'):
                    # HACK NOT SURE IF YOU CAN DO THIS(Formatting)!
                    site = pydarn.radar.network().getRadarByCode(rad) \
                        .getSiteByDate(times[i])
                    myFov = pydarn.radar.radFov.fov(site=site,
                                                    ngates=nrang[i],
                                                    nbeams=site.maxbeam,
                                                    rsep=rsep[i],
                                                    coords=coords,
                                                    date_time=times[i])
                    if (myFov.latFull[bmnum].max() > ymax):
                        ymax = myFov.latFull[bmnum].max()
                    if (myFov.latFull[bmnum].min() < ymin):
                        ymin = myFov.latFull[bmnum].min()
                else:
                    ymin = 0
                    if (nrang[i] * rsep[i] + frang[i] > ymax):
                        ymax = nrang[i] * rsep[i] + frang[i]

        else:
            ymin, ymax = 0, max(nrang)
    else:
        ymin, ymax = yrng[0], yrng[1]

    # Format the xaxis.
    xmin = date2num(times[0])
    xmax = date2num(times[len(times) - 1])
    xrng = (xmax - xmin)
    inter = int(round(xrng / 6. * 86400.))
    inter2 = int(round(xrng / 24. * 86400.))
    ax.xaxis.set_minor_locator(SecondLocator(interval=inter2))
    ax.xaxis.set_major_locator(SecondLocator(interval=inter))

    # If axis is at bottom of figure, draw xticks.
    if (not bottom):
        for tick in ax.xaxis.get_major_ticks():
            tick.label.set_fontsize(0)
    else:
        if xticks is not None:
            ax.xaxis.set_ticks(xticks)

    if axvlines is not None:
        for line in axvlines:
            ax.axvline(line, color='0.25', ls='--')

        for tick in ax.xaxis.get_major_ticks():
            tick.label.set_fontsize(xtick_size)
        ax.xaxis.set_major_formatter(DateFormatter('%H:%M'))
        ax.xaxis.set_label_text('UT')

    # Set ytick size.
    for tick in ax.yaxis.get_major_ticks():
        tick.label.set_fontsize(ytick_size)
    # Format yaxis depending on coords.
    if (coords == 'gate'):
        ax.yaxis.set_label_text('Range gate', size=10)
        ax.yaxis.set_major_formatter(FormatStrFormatter('%d'))
        ax.yaxis.set_major_locator(MultipleLocator((ymax - ymin) / 5.))
        ax.yaxis.set_minor_locator(MultipleLocator((ymax - ymin) / 25.))
    elif (coords == 'geo' or coords == 'mag'):
        if (coords == 'mag'):
            ax.yaxis.set_label_text('Mag Lat [deg]', size=10)
        else:
            ax.yaxis.set_label_text('Geo Lat [deg]', size=10)
    elif (coords == 'rng'):
        ax.yaxis.set_label_text('Slant Range [km]', size=10)
        ax.yaxis.set_major_formatter(FormatStrFormatter('%d'))
        ax.yaxis.set_major_locator(MultipleLocator(1000))
        ax.yaxis.set_minor_locator(MultipleLocator(250))
    ax.set_ylim(bottom=ymin, top=ymax)

    return ax