Exemple #1
0
def plot_rli(myBeam, normalized=True, xcf=False,
             show=True, png=False, pdf=False):
    """This function plots a range-lag-intensity plot of ACF/XCF data
    for an input beamData object.

    Parameters
    ----------
    myBeam : beamData object from pydarn.sdio.radDataTypes
        Beam data to plot.
    normalized : Optional[boolean]
        Specifies whether to normalize the ACF/XCF data by the lag-zero power.
        Default is true.
    xcf : Optional[boolean]
        Specifies whether to plot XCF data or not.  Default is false.
    show : Optional[boolean]
        Specifies whether plot to a figure window. If set to false and
        png or pdf are set to false, then the figure is plotted to a png file.
        Default is true.
    png : Optional[boolean]
        Flag for setting the output format to png.  Default is false.
    pdf : Optional[boolena]
        Flag for setting the output format to pdf.  Default is false.

    Returns
    -------
    Nothing

    Example
    -------
            from datetime import datetime
            myPtr = pydarn.sdio.radDataOpen(datetime(2012,5,21), \
                                          'kap',fileType='rawacf')
            myBeam = myPtr.readRec()
            pydarn.plotting.acfPlot.plot_rli(myBeam)

    Written by ASR 20141230
    """

    from matplotlib import pyplot
    from matplotlib.backends.backend_agg import FigureCanvasAgg
    from matplotlib.figure import Figure as mpl_fig
    import numpy as np
    from matplotlib import colors
    import matplotlib as mpl
    import matplotlib.cm as cmx
    from davitpy import pydarn

    # Input checks
    # myBeam check for rawacf file
    assert(myBeam.fType == 'rawacf'), logging.error(
        'myBeam must be from a rawacf file')
    # Check of normalized variable type
    assert(isinstance(normalized, bool)), logging.error(
        'normalized must be a boolean')
    # Check of xcf variable type
    assert(isinstance(xcf, bool)), logging.error(
        'xcf must be a boolean')
    # Check of show variable type
    assert(isinstance(show, bool)), logging.error(
        'show must be a boolean')
    # Check of png variable type
    assert(isinstance(png, bool)), logging.error(
        'png must be a boolean')
    # Check of pdf variable type
    assert(isinstance(pdf, bool)), logging.error(
        'pdf must be a boolen')

    # Get parameters
    lags = list(set([x[1] - x[0] for x in myBeam.prm.ltab]))
    range_gates = np.linspace(0.5, myBeam.prm.nrang + 0.5,
                              num=myBeam.prm.nrang + 1)
    power = np.array(myBeam.rawacf.pwr0)
    noise = np.array(myBeam.prm.noisesearch)

    # Make the figure and axes
    if show:
        fig = pyplot.figure()
    else:
        if (png is False) and (pdf is False):
            png = True
        fig = mpl_fig()

#    fig = pyplot.figure()
    ax1 = fig.add_axes([0.1, 0.1, 0.77, 0.1])
    ax2 = fig.add_axes([0.1, 0.2, 0.77, 0.7])
    ax3 = fig.add_axes([0.88, 0.2, 0.02, 0.7])

    # Plot the SNR
    ax1.plot(range(1, myBeam.prm.nrang + 1), 10 *
             np.log10(power / noise), lw=5)

    # Calculate bounds for plotting
    lag_numbers = []
    for lag in lags:
        temp = [lag - 0.5, lag + 0.5]
        lag_numbers.extend(temp)

    # Generate a scalar colormapping to map data to cmap
    if normalized:
        cl = [-1, 1]
    else:
        max_amp = np.max(power)
        cl = [-max_amp, max_amp]

    cmap = 'jet'
    cNorm = colors.Normalize(vmin=cl[0], vmax=cl[1])
    scalarMap = cmx.ScalarMappable(norm=cNorm, cmap=cmap)

    # Now plot SCR data
    for r in range(myBeam.prm.nrang):

        # Grab the appropriate data for plotting
        if ((xcf) and (myBeam.prm.xcf == 0)):
            logging.warning("No interferometer data available.")
            return
        elif ((xcf) and (myBeam.prm.xcf == 1)):
            re = np.array([x[0] for x in myBeam.rawacf.xcfd[r]])
            im = np.array([x[1] for x in myBeam.rawacf.xcfd[r]])
        else:
            re = np.array([x[0] for x in
                           myBeam.rawacf.acfd[r]])
            im = np.array([x[1] for x in myBeam.rawacf.acfd[r]])

        if normalized:
            re /= power[r]
            im /= power[r]

        # Index needed for plotting but not incrementing on missing lags
        i = 0
        for l in range(lags[-1] + 1):
            # Make coordinates for:
            # Real and
            x1 = np.array([r + 0.5, r + 0.5, r + 1.0, r + 1.0])
            # Imaginary compenents of ACF/XCF
            x2 = np.array([r + 1.0, r + 1.0, r + 1.5, r + 1.5])
            y = np.array([l - 0.5, l + 0.5, l + 0.5, l - 0.5])

            # If the lag isn't a "missing" lag plot the data, else plot
            # a black square.
            if (l in lags):
                ax2.fill(x1, y, color=scalarMap.to_rgba(re[i]))
                ax2.fill(x2, y, color=scalarMap.to_rgba(im[i]))
                i += 1
            else:
                ax2.fill(x1, y, color='black')
                ax2.fill(x2, y, color='black')

    # Add the colorbar and label it
    cbar = mpl.colorbar.ColorbarBase(ax3, norm=cNorm, cmap=cmap)

    if normalized:
        cbar.set_label('Normalized Lag Power')
    else:
        cbar.set_label('Lag Power')

    # Set plot axis labels
    ax2.set_ylim([-0.5, lag_numbers[-1]])
    ax2.set_yticks(np.linspace(0, lags[-1], num=lags[-1] + 1))
    ax2.set_xlim([range_gates[0], range_gates[-1]])
    ax2.set_xticklabels([], visible=False)
    ax2.set_ylabel('Lag Number')

    # Set pwr0 plot axis labels
    ax1.set_xlim([range_gates[0], range_gates[-1]])
    ax1.set_ylim([0, 40])
    ax1.set_yticks(np.linspace(0, 30, num=4))
    ax1.set_ylabel('pwr_0\n(dB)')
    ax1.set_xlabel('Range Gate')

    rad_name = pydarn.radar.network().getRadarById(myBeam.stid).name
    rad = pydarn.radar.network().getRadarById(myBeam.stid).code[0]
    if xcf:
        title = myBeam.time.strftime('%d %b, %Y %H:%M:%S UT') + ' ' + \
            'XCF ' + rad_name + ' Beam: ' + str(myBeam.bmnum)
    else:
        title = myBeam.time.strftime('%d %b, %Y %H:%M:%S UT') + ' ' + \
            'ACF ' + rad_name + ' Beam: ' + str(myBeam.bmnum)
    fig.suptitle(title, y=0.94)

    # handle the outputs
    if png:
        if not show:
            canvas = FigureCanvasAgg(fig)
        if xcf:
            fig.savefig('XCF_' +
                        myBeam.time.strftime("%Y%m%d_%H%M%S_UT") +
                        '_' + rad + '.png')
        else:
            fig.savefig('ACF_' +
                        myBeam.time.strftime("%Y%m%d_%H%M%S_UT") +
                        '_' + rad + '.png')
    if pdf:
        if not show:
            canvas = FigureCanvasAgg(fig)
        if xcf:
            fig.savefig('XCF_' +
                        myBeam.time.strftime("%Y%m%d_%H%M%S_UT") +
                        '_' + rad + '.pdf')
        else:
            fig.savefig('ACF_' +
                        myBeam.time.strftime("%Y%m%d_%H%M%S_UT") +
                        '_' + rad + '.pdf')
    if show:
        fig.show()
Exemple #2
0
def plot_acf(myBeam, gate, normalized=True, mark_blanked=True,
             xcf=False, panel=0, ax=None, show=True, png=False,
             pdf=False):
    """Plot the ACF/XCF for a specified beamData object at a
    specified range gate

    Parameters
    ----------
    myBeam : a beamData object from pydarn.sdio.radDataTypes
        The data object taht you would like to plot.
    gate : int
        The range gate to plot data for.
    normalized : Optional[boolean]
        Specifies whether to normalize the ACF/XCF data by the
        lag-zero power. Default is true.
    mark_blanked : Optional[boolean]
        Specifies whether magnitude and phase should be
        plotted instead of real and imaginary. Default is true.
    xcf : Optional[boolean]
        Specifies whether to plot XCF data or not.  Default is false.
    panel : Optional[int]
        From 0 to 3 specifies which data to plot of ACF/XCF, ACF/XCF
        amplitude, ACF/XCF phase, or power spectrum, respectively.
        Default is panel=0.
    ax : Optional[matplotlib axis object]
        Default is none.
    show : Optional[boolean]
        Specifies whether plot to a figure window. If set to false
        and png or pdf are set to false, then the figure is plotted
        to a png file.
    png : Optional[boolean]
        Flag to set the output format to a png file.  Default
        is false.
    pdf : Optional[boolean]
        Flag to set the output format to a pdf file.  Default
        is false.

    Returns
    -------
    Nothing

    Example
    -------
        from datetime import datetime
        myPtr = pydarn.sdio.radDataOpen(datetime(2012,5,21), \
                                      'kap',fileType='rawacf')
        myBeam = myPtr.readRec()
        pydarn.plotting.acfPlot.plot_acf(myBeam,24)


    Written by ASR 20141230
    """

    from matplotlib import pyplot
    from matplotlib.backends.backend_agg import FigureCanvasAgg
    from matplotlib.figure import Figure as mpl_fig
    from matplotlib.ticker import MaxNLocator
    import numpy as np
    from davitpy import pydarn

    # Input checks
    # myBeam check for rawacf file
    assert(myBeam.fType == 'rawacf'), logging.error(
        'myBeam must be from a rawacf file')
    # Check of gate parameter
    assert(isinstance(gate, int) and gate >= 0), logging.error(
        'gate must be an integer and zero or positive')
    # Check of normalized
    assert(isinstance(normalized, bool)), logging.error(
        'normalized must be a boolean')
    # Check of mark_blanked
    assert(isinstance(mark_blanked, bool)), logging.error(
        'mark_blanked must be a boolean')
    # Check of xcf
    assert(isinstance(xcf, bool)), logging.error(
        'xcf must be a boolean')
    # Check of panel
    assert(isinstance(panel, int)), logging.error(
        'panel must be an integer')
    # Space for ax check(s)
    # Check of show variable type
    assert(isinstance(show, bool)), logging.error(
        'show must be a boolean')
    # Check of png variable type
    assert(isinstance(png, bool)), logging.error(
        'png must be a boolean')
    # Check of pdf variable type
    assert(isinstance(pdf, bool)), logging.error(
        'pdf must be a boolen')

    lags = list(set([x[1] - x[0] for x in myBeam.prm.ltab]))
    ltab = myBeam.prm.ltab
    tau = myBeam.prm.mpinc
    tfr = myBeam.prm.lagfr
    tp = myBeam.prm.txpl
    nave = myBeam.prm.nave
    mplgs = myBeam.prm.mplgs
    noise = np.array(myBeam.prm.noisesearch)
    power = np.array(myBeam.rawacf.pwr0)

    if normalized:
        fluct = 1 / np.sqrt(nave) * (1 + 1 / (power[gate] / noise))
    else:
        fluct = power[gate] / np.sqrt(nave) * \
            (1 + 1 / (power[gate] / noise))

    # Grab the appropriate data for plotting
    if ((xcf) and (myBeam.prm.xcf == 0)):
        logging.warning("No interferometer data available.")
        return
    elif ((xcf) and (myBeam.prm.xcf == 1)):
        re = np.array([x[0] for x in myBeam.rawacf.xcfd[gate]])
        im = np.array([x[1] for x in myBeam.rawacf.xcfd[gate]])
    else:
        re = np.array([x[0] for x in myBeam.rawacf.acfd[gate]])
        im = np.array([x[1] for x in myBeam.rawacf.acfd[gate]])

    if normalized:
        re /= power[gate]
        im /= power[gate]

    # Determine which lags are blanked by Tx pulses
    blanked = calc_blanked(ltab, tp, tau, tfr, gate)
    tx = np.zeros(mplgs)
    for l, lag in enumerate(lags):
        if len(blanked[lag]):
            tx[l] = 1
        else:
            tx[l] = 0

    # Take the fourier transform of the complex ACF to
    # get the power spectrum
    temp = np.abs(nuft(re + 1j * im, np.array(lags), lags[-1])) ** 2
    acfFFT = []
    acfFFT.extend(temp[len(temp) / 2 + 1:])
    acfFFT.extend(temp[0:len(temp) / 2 + 1])
    freq_scale_factor = ((3. * 10 ** 8) /
                         (myBeam.prm.tfreq * 1000. * 2. * lags[-1] *
                          myBeam.prm.mpinc * 10.0 ** -6))
    vels = freq_scale_factor * (np.array(range(len(acfFFT))) -
                                len(acfFFT) / 2)

    # Calculate the amplitude and phase of the complex ACF/XCF
    amplitude = np.sqrt(re ** 2 + im ** 2)
    phase = np.arctan2(im, re)

    # Calculate bounds for plotting
    lag_numbers = []
    for lag in lags:
        temp = [lag - 0.5, lag + 0.5]
        lag_numbers.extend(temp)

    if ax is None:
        # Make the figure and axes
        if show:
            fig = pyplot.figure()
        else:
            if (png is False) and (pdf is False):
                png = True
            fig = mpl_fig()
        ax1 = fig.add_axes([0.12, 0.55, 0.35, 0.35])
        ax2 = fig.add_axes([0.12, 0.1, 0.35, 0.35])
        ax3 = fig.add_axes([0.52, 0.1, 0.35, 0.35])
        ax4 = fig.add_axes([0.52, 0.55, 0.35, 0.35])

        rad_name = pydarn.radar.network().getRadarById(myBeam.stid).name
        if xcf:
            title = myBeam.time.strftime('%d %b %Y %H:%M:%S UT') + \
                ' XCF ' + rad_name + '\nBeam: ' + str(myBeam.bmnum) + \
                ' Gate: ' + str(gate)
        else:
            title = myBeam.time.strftime('%d %b %Y %H:%M:%S UT') + \
                ' ACF ' + rad_name + '\nBeam: ' + str(myBeam.bmnum) + \
                ' Gate: ' + str(gate)
        fig.suptitle(title)
    else:
        ax1 = None
        ax2 = None
        ax3 = None
        ax4 = None

    # Now plot the ACF/XCF panel as necessary
    if (ax is not None) and (panel == 0):
        ax1 = ax

    if (ax1 is not None):
        if ((blanked) and (mark_blanked)):
            inds = np.where(tx == 1)[0]
            if len(inds):
                for ind in inds:
                    ax1.plot(lags[ind], re[ind], marker='x',
                             color='red', mew=3, ms=8, zorder=10)
                    ax1.plot(lags[ind], im[ind], marker='x',
                             color='red', mew=3, ms=8, zorder=10)

        ax1.plot(lags, re, marker='o', color='blue', lw=2, label='Real')
        ax1.plot(lags, im, marker='o', color='green', lw=2, label='Imag')
        ax1.plot([lags[0], lags[-1] + 1], [0, 0], 'k--', lw=2)

        ax1.legend(loc='lower right', fontsize='medium', ncol=2)

        ax1.set_xlim([-0.5, lag_numbers[-1]])
        ax1.set_xlabel('Lag Number')
        # Since dealing with lag numbers, force the tick marks
        # To integer numbers as there isn't a lag 2.5
        ax1.xaxis.set_major_locator(MaxNLocator(integer=True))
        if normalized:
            ax1.set_ylim([-1.5, 1.5])
            ax1.set_yticks(np.linspace(-1, 1, num=5))
            ax1.set_ylabel('Normalized ACF')
        else:
            ax1.set_ylim([-1.5 * power[gate], 1.5 * power[gate]])
            ax1.set_yticks(np.linspace(-1, 1, num=5) * power[gate])
            ax1.set_ylabel('ACF')

    # Now plot the ACF/XCF amplitude panel as necessary
    if ((ax is not None) and (panel == 1)):
        ax2 = ax

    if (ax2 is not None):
        if ((blanked) and (mark_blanked)):
            inds = np.where(tx == 1)[0]
            if len(inds):
                for ind in inds:
                    ax2.plot(lags[ind], amplitude[ind], marker='x',
                             color='red', mew=3, ms=8, zorder=10)

        ax2.plot(lags, amplitude, marker='o', color='black', lw=2,
                 zorder=1)
        ax2.plot([lags[0], lags[-1] + 1], [fluct, fluct], 'b--', lw=2,
                 zorder=1)

        ax2.set_xlim([-0.5, lag_numbers[-1]])
        ax2.set_xlabel('Lag Number')
        # Since dealing with lag numbers, force the tick marks
        # To integer numbers as there isn't a lag 2.5
        ax2.xaxis.set_major_locator(MaxNLocator(integer=True))
        ax2.set_ylim([0, 1.05 * np.max(amplitude)])
        if normalized:
            ax2.set_ylabel('Normalized Lag Power')
            ax2.set_yticks(np.linspace(0.2, 1.2, num=6))
        else:
            ax2.set_ylabel('Lag Power')
            ax2.set_yticks(np.linspace(0.2, 1.2, num=6) * power[gate])

    # Now plot the ACF/XCF phase panel as necessary
    if ((ax is not None) and (panel == 2)):
        ax3 = ax

    if (ax3 is not None):
        if ((blanked) and (mark_blanked)):
            inds = np.where(tx == 1)[0]
            if len(inds):
                for ind in inds:
                    ax3.plot(lags[ind], phase[ind], marker='x',
                             color='black', mew=3, ms=8, zorder=10)

        ax3.plot(lags, phase, marker='o', color='red', lw=2)
        ax3.plot([lags[0], lags[-1] + 1], [0, 0], 'k--', lw=2)

        ax3.set_xlim([-0.50, lag_numbers[-1]])
        # Since dealing with lag numbers, force the tick marks
        # To integer numbers as there isn't a lag 2.5
        ax3.xaxis.set_major_locator(MaxNLocator(integer=True))
        ax3.set_xlabel('Lag Number')
        ax3.set_ylabel('Phase')
        ax3.set_ylim([-np.pi - 0.5, np.pi + 0.5])
        ax3.set_yticks(np.linspace(-np.pi, np.pi, num=7))
        ylabels = [r"-$\pi$", r"-2$\pi$/3", r"-$\pi$/3", "0",
                   r"$\pi$/3", r"2$\pi$/3", r"$\pi$"]
        ax3.set_yticklabels(ylabels)
        if ax is None:
            ax3.yaxis.set_ticks_position('right')
            ax3.yaxis.set_label_position('right')

    # Now plot the power spectrum panel as necessary
    if ((ax is not None) and (panel == 3)):
        ax4 = ax

    if (ax4 is not None):
        ax4.plot(vels, acfFFT, marker='o', lw=2)
        ax4.set_xlabel(r'Velocity (m s$^{-1}$)')
        ax4.set_ylabel('Power Spectrum')
        if ax is None:
            ax4.yaxis.set_ticks_position('right')
            ax4.yaxis.set_label_position('right')
            ax4.get_yaxis().get_offset_text().set_x(1)
            ax4.yaxis.set_major_locator(MaxNLocator(prune='upper'))

    # handle the outputs
    rad = pydarn.radar.network().getRadarById(myBeam.stid).code[0]
    if png and (ax is None):
        if not show:
            canvas = FigureCanvasAgg(fig)
        if xcf:
            fig.savefig('XCF_' +
                        myBeam.time.strftime("%Y%m%d_%H%M%S_UT") +
                        '_' + rad + '_gate' + str(gate).zfill(3) + '.png')
        else:
            fig.savefig('ACF_' +
                        myBeam.time.strftime("%Y%m%d_%H%M%S_UT") +
                        '_' + rad + '_gate' + str(gate).zfill(3) + '.png')
    if pdf and (ax is None):
        if not show:
            canvas = FigureCanvasAgg(fig)
        if xcf:
            fig.savefig('XCF_' +
                        myBeam.time.strftime("%Y%m%d_%H%M%S_UT") +
                        '_' + rad + '_gate' + str(gate).zfill(3) + '.pdf')
        else:
            fig.savefig('ACF_' +
                        myBeam.time.strftime("%Y%m%d_%H%M%S_UT") +
                        '_' + rad + '_gate' + str(gate).zfill(3) + '.pdf')
    if show and (ax is None):
        fig.show()
Exemple #3
0
def plot_acf(myBeam, gate, normalized=True, mark_blanked=True,
             xcf=False, panel=0, ax=None, show=True, png=False,
             pdf=False):
    """Plot the ACF/XCF for a specified beamData object at a
    specified range gate

    Parameters
    ----------
    myBeam : a beamData object from pydarn.sdio.radDataTypes
        The data object taht you would like to plot.
    gate : int
        The range gate to plot data for.
    normalized : Optional[boolean]
        Specifies whether to normalize the ACF/XCF data by the
        lag-zero power. Default is true.
    mark_blanked : Optional[boolean]
        Specifies whether magnitude and phase should be
        plotted instead of real and imaginary. Default is true.
    xcf : Optional[boolean]
        Specifies whether to plot XCF data or not.  Default is false.
    panel : Optional[int]
        From 0 to 3 specifies which data to plot of ACF/XCF, ACF/XCF
        amplitude, ACF/XCF phase, or power spectrum, respectively.
        Default is panel=0.
    ax : Optional[matplotlib axis object]
        Default is none.
    show : Optional[boolean]
        Specifies whether plot to a figure window. If set to false
        and png or pdf are set to false, then the figure is plotted
        to a png file.
    png : Optional[boolean]
        Flag to set the output format to a png file.  Default
        is false.
    pdf : Optional[boolean]
        Flag to set the output format to a pdf file.  Default
        is false.

    Returns
    -------
    Nothing

    Example
    -------
        from datetime import datetime
        myPtr = pydarn.sdio.radDataOpen(datetime(2012,5,21), \
                                      'kap',fileType='rawacf')
        myBeam = myPtr.readRec()
        pydarn.plotting.acfPlot.plot_acf(myBeam,24)


    Written by ASR 20141230
    """

    from matplotlib import pyplot
    from matplotlib.backends.backend_agg import FigureCanvasAgg
    from matplotlib.figure import Figure as mpl_fig
    from matplotlib.ticker import MaxNLocator
    import numpy as np
    from davitpy import pydarn

    lags = list(set([x[1] - x[0] for x in myBeam.prm.ltab]))
    ltab = myBeam.prm.ltab
    tau = myBeam.prm.mpinc
    tfr = myBeam.prm.lagfr
    tp = myBeam.prm.txpl
    nave = myBeam.prm.nave
    mplgs = myBeam.prm.mplgs
    noise = np.array(myBeam.prm.noisesearch)
    power = np.array(myBeam.rawacf.pwr0)

    if normalized:
        fluct = 1 / np.sqrt(nave) * (1 + 1 / (power[gate] / noise))
    else:
        fluct = power[gate] / np.sqrt(nave) * \
            (1 + 1 / (power[gate] / noise))

    # Grab the appropriate data for plotting
    if ((xcf) and (myBeam.prm.xcf == 0)):
        logging.warning("No interferometer data available.")
        return
    elif ((xcf) and (myBeam.prm.xcf == 1)):
        re = np.array([x[0] for x in myBeam.rawacf.xcfd[gate]])
        im = np.array([x[1] for x in myBeam.rawacf.xcfd[gate]])
    else:
        re = np.array([x[0] for x in myBeam.rawacf.acfd[gate]])
        im = np.array([x[1] for x in myBeam.rawacf.acfd[gate]])

    if normalized:
        re /= power[gate]
        im /= power[gate]

    # Determine which lags are blanked by Tx pulses
    blanked = calc_blanked(ltab, tp, tau, tfr, gate)
    tx = np.zeros(mplgs)
    for l, lag in enumerate(lags):
        if len(blanked[lag]):
            tx[l] = 1
        else:
            tx[l] = 0

    # Take the fourier transform of the complex ACF to
    # get the power spectrum
    temp = np.abs(nuft(re + 1j * im, np.array(lags), lags[-1])) ** 2
    acfFFT = []
    acfFFT.extend(temp[len(temp) / 2 + 1:])
    acfFFT.extend(temp[0:len(temp) / 2 + 1])
    freq_scale_factor = ((3. * 10 ** 8) / 
                         (myBeam.prm.tfreq * 1000. * 2. * lags[-1] *
                          myBeam.prm.mpinc * 10.0 ** -6))
    vels = freq_scale_factor * (np.array(range(len(acfFFT))) -
                                len(acfFFT) / 2)

    # Calculate the amplitude and phase of the complex ACF/XCF
    amplitude = np.sqrt(re ** 2 + im ** 2)
    phase = np.arctan2(im, re)

    # Calculate bounds for plotting
    lag_numbers = []
    for lag in lags:
        temp = [lag - 0.5, lag + 0.5]
        lag_numbers.extend(temp)

    if ax is None:
        # Make the figure and axes
        if show:
            fig = pyplot.figure()
        else:
            if (png == False) and (pdf == False):
                png = True
            fig = mpl_fig()
        ax1 = fig.add_axes([0.1, 0.55, 0.35, 0.35])
        ax2 = fig.add_axes([0.1, 0.1, 0.35, 0.35])
        ax3 = fig.add_axes([0.5, 0.1, 0.35, 0.35])
        ax4 = fig.add_axes([0.5, 0.55, 0.35, 0.35])

        rad_name = pydarn.radar.network().getRadarById(myBeam.stid).name
        if xcf:
            title = myBeam.time.strftime('%d %b, %Y %H:%M:%S UT') + \
                ' ' + 'XCF ' + rad_name + ' Beam: ' + str(myBeam.bmnum)
        else:
            title = myBeam.time.strftime('%d %b, %Y %H:%M:%S UT') + \
                ' ' + 'ACF ' + rad_name + ' Beam: ' + str(myBeam.bmnum)
        fig.suptitle(title, y=0.94)
    else:
        ax1 = None
        ax2 = None
        ax3 = None
        ax4 = None

    # Now plot the ACF/XCF panel as necessary
    if (ax is not None) and (panel == 0):
        ax1 = ax

    if (ax1 is not None):
        if ((blanked) and (mark_blanked)):
            inds = np.where(tx == 1)[0]
            if len(inds):
                for ind in inds:
                    ax1.plot(lags[ind], re[ind], marker='x',
                             color='red', mew=3, ms=8, zorder=10)
                    ax1.plot(lags[ind], im[ind], marker='x',
                             color='red', mew=3, ms=8, zorder=10)

        ax1.plot(lags, re, marker='o', color='blue', lw=2)
        ax1.plot(lags, im, marker='o', color='green', lw=2)
        ax1.plot([lags[0], lags[-1] + 1], [0, 0], 'k--', lw=2)

        ax1.set_xlim([-0.5, lag_numbers[-1]])
        ax1.set_xlabel('Lag Number')
        if normalized:
            ax1.set_ylim([-1.5, 1.5])
            ax1.set_yticks(np.linspace(-1, 1, num=5))
            ax1.set_ylabel('Normalized ACF')
        else:
            ax1.set_ylim([-1.5 * power[gate], 1.5 * power[gate]])
            ax1.set_yticks(np.linspace(-1, 1, num=5) * power[gate])
            ax1.set_ylabel('ACF')

    # Now plot the ACF/XCF amplitude panel as necessary
    if ((ax is not None) and (panel == 1)):
        ax2 = ax

    if (ax2 is not None):
        if ((blanked) and (mark_blanked)):
            inds = np.where(tx == 1)[0]
            if len(inds):
                for ind in inds:
                    ax2.plot(lags[ind], amplitude[ind], marker='x',
                             color='red', mew=3, ms=8, zorder=10)

        ax2.plot(lags, amplitude, marker='o', color='black', lw=2,
                 zorder=1)
        ax2.plot([lags[0], lags[-1] + 1], [fluct, fluct], 'b--', lw=2,
                 zorder=1)

        ax2.set_xlim([-0.5, lag_numbers[-1]])
        ax2.set_xlabel('Lag Number')
        ax2.set_ylim([0, 1.05 * np.max(amplitude)])
        if normalized:
            ax2.set_ylabel('Normalized Lag Power')
            ax2.set_yticks(np.linspace(0.2, 1.2, num=6))
        else:
            ax2.set_ylabel('Lag Power')
            ax2.set_yticks(np.linspace(0.2, 1.2, num=6) * power[gate])

    # Now plot the ACF/XCF phase panel as necessary
    if ((ax is not None) and (panel == 2)):
        ax3 = ax

    if (ax3 is not None):
        if ((blanked) and (mark_blanked)):
            inds = np.where(tx == 1)[0]
            if len(inds):
                for ind in inds:
                    ax3.plot(lags[ind], phase[ind], marker='x',
                             color='black', mew=3, ms=8, zorder=10)

        ax3.plot(lags, phase, marker='o', color='red', lw=2)
        ax3.plot([lags[0], lags[-1] + 1], [0, 0], 'k--', lw=2)

        ax3.set_xlim([-0.50, lag_numbers[-1]])
        ax3.set_xlabel('Lag Number')
        ax3.set_ylabel('Phase')
        ax3.set_ylim([-np.pi - 0.5, np.pi + 0.5])
        ax3.set_yticks(np.linspace(-np.pi, np.pi, num=7))
        ylabels = [r"-$\pi$", r"-2$\pi$/3", r"-$\pi$/3", "0",
                   r"$\pi$/3", r"2$\pi$/3", r"$\pi$"]
        ax3.set_yticklabels(ylabels)
        if ax is None:
            ax3.yaxis.set_ticks_position('right')
            ax3.yaxis.set_label_position('right')

    # Now plot the power spectrum panel as necessary
    if ((ax is not None) and (panel == 3)):
        ax4 = ax

    if (ax4 is not None):
        ax4.plot(vels, acfFFT, marker='o', lw=2)
        ax4.set_xlabel(r'Velocity (m/s)')
        ax4.set_ylabel('Power Spectrum')
        if ax is None:
            ax4.yaxis.set_ticks_position('right')
            ax4.yaxis.set_label_position('right')
            ax4.get_yaxis().get_offset_text().set_x(1)
            ax4.yaxis.set_major_locator(MaxNLocator(prune='upper'))

    # handle the outputs
    rad = pydarn.radar.network().getRadarById(myBeam.stid).code[0]
    if png and (ax is None):
        if not show:
            canvas = FigureCanvasAgg(fig)
        if xcf:
            fig.savefig('XCF_' +
                        myBeam.time.strftime("%Y%m%d_%H%M%S_UT") +
                        '_' + rad + '_gate' + str(gate) + '.png')
        else:
            fig.savefig('ACF_' +
                        myBeam.time.strftime("%Y%m%d_%H%M%S_UT") +
                        '_' + rad + '_gate' + str(gate) + '.png')
    if pdf and (ax is None):
        if not show:
            canvas = FigureCanvasAgg(fig)
        if xcf:
            fig.savefig('XCF_' +
                        myBeam.time.strftime("%Y%m%d_%H%M%S_UT") +
                        '_' + rad + '_gate' + str(gate) + '.pdf')
        else:
            fig.savefig('ACF_' +
                        myBeam.time.strftime("%Y%m%d_%H%M%S_UT") +
                        '_' + rad + '_gate' + str(gate) + '.pdf')
    if show and (ax is None):
        fig.show()
Exemple #4
0
def plot_rli(myBeam, normalized=True, xcf=False, show=True, png=False, pdf=False):
    """This function plots a range-lag-intensity plot of ACF/XCF data
    for an input beamData object.

    Parameters
    ----------
    myBeam : beamData object from pydarn.sdio.radDataTypes
        Beam data to plot.
    normalized : Optional[boolean]
        Specifies whether to normalize the ACF/XCF data by the lag-zero power.
        Default is true.
    xcf : Optional[boolean]
        Specifies whether to plot XCF data or not.  Default is false.
    show : Optional[boolean]
        Specifies whether plot to a figure window. If set to false and
        png or pdf are set to false, then the figure is plotted to a png file.
        Default is true.
    png : Optional[boolean]
        Flag for setting the output format to png.  Default is false.
    pdf : Optional[boolena]
        Flag for setting the output format to pdf.  Default is false.

    Returns
    -------
    Nothing

    Example
    -------
            from datetime import datetime
            myPtr = pydarn.sdio.radDataOpen(datetime(2012,5,21), \
                                          'kap',fileType='rawacf')
            myBeam = myPtr.readRec()
            pydarn.plotting.acfPlot.plot_rli(myBeam)

    Written by ASR 20141230
    """

    from matplotlib import pyplot
    from matplotlib.backends.backend_agg import FigureCanvasAgg
    from matplotlib.figure import Figure as mpl_fig
    import numpy as np
    from matplotlib import colors
    import matplotlib as mpl
    import matplotlib.cm as cmx
    from davitpy import pydarn

    # Get parameters
    lags = list(set([x[1] - x[0] for x in myBeam.prm.ltab]))
    range_gates = np.linspace(0.5, myBeam.prm.nrang + 0.5,
                              num=myBeam.prm.nrang + 1)
    power = np.array(myBeam.rawacf.pwr0)
    noise = np.array(myBeam.prm.noisesearch)

    # Make the figure and axes
    if show:
        fig = pyplot.figure()
    else:
        if (png == False) and (pdf == False):
            png = True
        fig = mpl_fig()

#    fig = pyplot.figure()
    ax1 = fig.add_axes([0.1, 0.1, 0.77, 0.1])
    ax2 = fig.add_axes([0.1, 0.2, 0.77, 0.7])
    ax3 = fig.add_axes([0.88, 0.2, 0.02, 0.7])

    # Plot the SNR
    ax1.plot(range(1, myBeam.prm.nrang + 1), 10 *
             np.log10(power / noise), lw=5)

    # Calculate bounds for plotting
    lag_numbers = []
    for lag in lags:
        temp = [lag - 0.5, lag + 0.5]
        lag_numbers.extend(temp)

    # Generate a scalar colormapping to map data to cmap
    if normalized:
        cl = [-1, 1]
    else:
        max_amp = np.max(power)
        cl = [-max_amp, max_amp]

    cmap = 'jet'
    cNorm = colors.Normalize(vmin=cl[0], vmax=cl[1])
    scalarMap = cmx.ScalarMappable(norm=cNorm, cmap=cmap)

    # Now plot SCR data
    for r in range(myBeam.prm.nrang):

        # Grab the appropriate data for plotting
        if ((xcf) and (myBeam.prm.xcf == 0)):
            logging.warning("No interferometer data available.")
            return
        elif ((xcf) and (myBeam.prm.xcf == 1)):
            re = np.array([x[0] for x in myBeam.rawacf.xcfd[r]])
            im = np.array([x[1] for x in myBeam.rawacf.xcfd[r]])
        else:
            re = np.array([x[0] for x in
                           myBeam.rawacf.acfd[r]])
            im = np.array([x[1] for x in myBeam.rawacf.acfd[r]])

        if normalized:
            re /= power[r]
            im /= power[r]

        # Index needed for plotting but not incrementing on missing lags
        i = 0
        for l in range(lags[-1] + 1):
            # Make coordinates for:
            # Real and
            x1 = np.array([r + 0.5, r + 0.5, r + 1.0, r + 1.0])
            # Imaginary compenents of ACF/XCF
            x2 = np.array([r + 1.0, r + 1.0, r + 1.5, r + 1.5])
            y = np.array([l - 0.5, l + 0.5, l + 0.5, l - 0.5])

            # If the lag isn't a "missing" lag plot the data, else plot
            # a black square.
            if (l in lags):
                ax2.fill(x1, y, color=scalarMap.to_rgba(re[i]))
                ax2.fill(x2, y, color=scalarMap.to_rgba(im[i]))
                i += 1
            else:
                ax2.fill(x1, y, color='black')
                ax2.fill(x2, y, color='black')

    # Add the colorbar and label it
    cbar = mpl.colorbar.ColorbarBase(ax3, norm=cNorm, cmap=cmap)

    if normalized:
        cbar.set_label('Normalized Lag Power')
    else:
        cbar.set_label('Lag Power')

    # Set plot axis labels
    ax2.set_ylim([-0.5, lag_numbers[-1]])
    ax2.set_yticks(np.linspace(0, lags[-1], num=lags[-1] + 1))
    ax2.set_xlim([range_gates[0], range_gates[-1]])
    ax2.set_xticklabels([], visible=False)
    ax2.set_ylabel('Lag Number')

    # Set pwr0 plot axis labels
    ax1.set_xlim([range_gates[0], range_gates[-1]])
    ax1.set_ylim([0, 40])
    ax1.set_yticks(np.linspace(0, 30, num=4))
    ax1.set_ylabel('pwr_0\n(dB)')
    ax1.set_xlabel('Range Gate')

    rad_name = pydarn.radar.network().getRadarById(myBeam.stid).name
    rad = pydarn.radar.network().getRadarById(myBeam.stid).code[0]
    if xcf:
        title = myBeam.time.strftime('%d %b, %Y %H:%M:%S UT') + ' ' + \
            'XCF ' + rad_name + ' Beam: ' + str(myBeam.bmnum)
    else:
        title = myBeam.time.strftime('%d %b, %Y %H:%M:%S UT') + ' ' + \
            'ACF ' + rad_name + ' Beam: ' + str(myBeam.bmnum)
    fig.suptitle(title, y=0.94)

    #handle the outputs
    if png:
        if not show:
            canvas = FigureCanvasAgg(fig)
        if xcf:
            fig.savefig('XCF_' +
                        myBeam.time.strftime("%Y%m%d_%H%M%S_UT") +
                        '_' + rad + '.png')
        else:
            fig.savefig('ACF_' +
                        myBeam.time.strftime("%Y%m%d_%H%M%S_UT") +
                        '_' + rad + '.png')
    if pdf:
        if not show:
            canvas = FigureCanvasAgg(fig)
        if xcf:
            fig.savefig('XCF_' +
                        myBeam.time.strftime("%Y%m%d_%H%M%S_UT") +
                        '_' + rad + '.pdf')
        else:
            fig.savefig('ACF_' +
                        myBeam.time.strftime("%Y%m%d_%H%M%S_UT") +
                        '_' + rad + '.pdf')
    if show:
        fig.show()
Exemple #5
0
def plot_acf(myBeam, gate, normalized=True, mark_blanked=True,
             xcf=False, panel=0, ax=None, show=True, png=False,
             pdf=False):
    """
    Plot the ACF/XCF for a specified beamData object at a
    specified range gate

    **Args**:
        * **myBeam** : a beamData object from pydarn.sdio.radDataTypes
        * **gate**: (int) The range gate to plot data for.
        * **[normalized]**: (boolean) Specifies whether to normalize the
                            ACF/XCF data by the lag-zero power.
        * **[mark_blanked]**: (boolean) Specifies whether magnitude and
                              phase should be plotted instead of real and
                              imaginary.
        * **[xcf]**: (boolean) Specifies whether to plot XCF data or not
        * **[panel]**: (int) from 0 to 3 specifies which data to plot of
                       ACF/XCF, ACF/XCF amplitude, ACF/XCF phase, or
                       power spectrum, respectively. Default is panel=0.
        * **[ax]**: a matplotlib axis object
        * **[show]**: (boolean) Specifies whether plot to a figure
                                window. If set to false and png or pdf
                                are set to false, then the figure is
                                plotted to a png file.

    **Returns**:
        Nothing.

    **Example**:
        ::
            from datetime import datetime
            myPtr = pydarn.sdio.radDataOpen(datetime(2012,5,21), \
                                          'kap',fileType='rawacf')
            myBeam = myPtr.readRec()
            pydarn.plotting.acfPlot.plot_acf(myBeam,24)

        Written by ASR 20141230
    """

    from matplotlib import pyplot
    from matplotlib.backends.backend_agg import FigureCanvasAgg
    from matplotlib.figure import Figure as mpl_fig
    from matplotlib.ticker import MaxNLocator
    import numpy as np
    from davitpy import pydarn

    lags = list(set([x[1] - x[0] for x in myBeam.prm.ltab]))
    ltab = myBeam.prm.ltab
    tau = myBeam.prm.mpinc
    tfr = myBeam.prm.lagfr
    tp = myBeam.prm.txpl
    nave = myBeam.prm.nave
    mplgs = myBeam.prm.mplgs
    noise = np.array(myBeam.prm.noisesearch)
    power = np.array(myBeam.rawacf.pwr0)

    if normalized:
        fluct = 1 / np.sqrt(nave) * (1 + 1 / (power[gate] / noise))
    else:
        fluct = power[gate] / np.sqrt(nave) * \
            (1 + 1 / (power[gate] / noise))

    # Grab the appropriate data for plotting
    if ((xcf) and (myBeam.prm.xcf == 0)):
        print "No interferometer data available."
        return
    elif ((xcf) and (myBeam.prm.xcf == 1)):
        re = np.array([x[0] for x in myBeam.rawacf.xcfd[gate]])
        im = np.array([x[1] for x in myBeam.rawacf.xcfd[gate]])
    else:
        re = np.array([x[0] for x in myBeam.rawacf.acfd[gate]])
        im = np.array([x[1] for x in myBeam.rawacf.acfd[gate]])

    if normalized:
        re /= power[gate]
        im /= power[gate]

    # Determine which lags are blanked by Tx pulses
    blanked = calc_blanked(ltab, tp, tau, tfr, gate)
    tx = np.zeros(mplgs)
    for l, lag in enumerate(lags):
        if len(blanked[lag]):
            tx[l] = 1
        else:
            tx[l] = 0

    # Take the fourier transform of the complex ACF to
    # get the power spectrum
    temp = np.abs(nuft(re + 1j * im, np.array(lags), lags[-1])) ** 2
    acfFFT = []
    acfFFT.extend(temp[len(temp) / 2 + 1:])
    acfFFT.extend(temp[0:len(temp) / 2 + 1])
    freq_scale_factor = ((3. * 10 ** 8) / 
                         (myBeam.prm.tfreq * 1000. * 2. * lags[-1] *
                          myBeam.prm.mpinc * 10.0 ** -6))
    vels = freq_scale_factor * (np.array(range(len(acfFFT))) -
                                len(acfFFT) / 2)

    # Calculate the amplitude and phase of the complex ACF/XCF
    amplitude = np.sqrt(re ** 2 + im ** 2)
    phase = np.arctan2(im, re)

    # Calculate bounds for plotting
    lag_numbers = []
    for lag in lags:
        temp = [lag - 0.5, lag + 0.5]
        lag_numbers.extend(temp)

    if ax is None:
        # Make the figure and axes
        if show:
            fig = pyplot.figure()
        else:
            if (png == False) and (pdf == False):
                png = True
            fig = mpl_fig()
        ax1 = fig.add_axes([0.1, 0.55, 0.35, 0.35])
        ax2 = fig.add_axes([0.1, 0.1, 0.35, 0.35])
        ax3 = fig.add_axes([0.5, 0.1, 0.35, 0.35])
        ax4 = fig.add_axes([0.5, 0.55, 0.35, 0.35])

        rad_name = pydarn.radar.network().getRadarById(myBeam.stid).name
        if xcf:
            title = myBeam.time.strftime('%d %b, %Y %H:%M:%S UT') + \
                ' ' + 'XCF ' + rad_name + ' Beam: ' + str(myBeam.bmnum)
        else:
            title = myBeam.time.strftime('%d %b, %Y %H:%M:%S UT') + \
                ' ' + 'ACF ' + rad_name + ' Beam: ' + str(myBeam.bmnum)
        fig.suptitle(title, y=0.94)
    else:
        ax1 = None
        ax2 = None
        ax3 = None
        ax4 = None

    # Now plot the ACF/XCF panel as necessary
    if (ax is not None) and (panel == 0):
        ax1 = ax

    if (ax1 is not None):
        if ((blanked) and (mark_blanked)):
            inds = np.where(tx == 1)[0]
            if len(inds):
                for ind in inds:
                    ax1.plot(lags[ind], re[ind], marker='x',
                             color='red', mew=3, ms=8, zorder=10)
                    ax1.plot(lags[ind], im[ind], marker='x',
                             color='red', mew=3, ms=8, zorder=10)

        ax1.plot(lags, re, marker='o', color='blue', lw=2)
        ax1.plot(lags, im, marker='o', color='green', lw=2)
        ax1.plot([lags[0], lags[-1] + 1], [0, 0], 'k--', lw=2)

        ax1.set_xlim([-0.5, lag_numbers[-1]])
        ax1.set_xlabel('Lag Number')
        if normalized:
            ax1.set_ylim([-1.5, 1.5])
            ax1.set_yticks(np.linspace(-1, 1, num=5))
            ax1.set_ylabel('Normalized ACF')
        else:
            ax1.set_ylim([-1.5 * power[gate], 1.5 * power[gate]])
            ax1.set_yticks(np.linspace(-1, 1, num=5) * power[gate])
            ax1.set_ylabel('ACF')

    # Now plot the ACF/XCF amplitude panel as necessary
    if ((ax is not None) and (panel == 1)):
        ax2 = ax

    if (ax2 is not None):
        if ((blanked) and (mark_blanked)):
            inds = np.where(tx == 1)[0]
            if len(inds):
                for ind in inds:
                    ax2.plot(lags[ind], amplitude[ind], marker='x',
                             color='red', mew=3, ms=8, zorder=10)

        ax2.plot(lags, amplitude, marker='o', color='black', lw=2,
                 zorder=1)
        ax2.plot([lags[0], lags[-1] + 1], [fluct, fluct], 'b--', lw=2,
                 zorder=1)

        ax2.set_xlim([-0.5, lag_numbers[-1]])
        ax2.set_xlabel('Lag Number')
        ax2.set_ylim([0, 1.05 * np.max(amplitude)])
        if normalized:
            ax2.set_ylabel('Normalized Lag Power')
            ax2.set_yticks(np.linspace(0.2, 1.2, num=6))
        else:
            ax2.set_ylabel('Lag Power')
            ax2.set_yticks(np.linspace(0.2, 1.2, num=6) * power[gate])

    # Now plot the ACF/XCF phase panel as necessary
    if ((ax is not None) and (panel == 2)):
        ax3 = ax

    if (ax3 is not None):
        if ((blanked) and (mark_blanked)):
            inds = np.where(tx == 1)[0]
            if len(inds):
                for ind in inds:
                    ax3.plot(lags[ind], phase[ind], marker='x',
                             color='black', mew=3, ms=8, zorder=10)

        ax3.plot(lags, phase, marker='o', color='red', lw=2)
        ax3.plot([lags[0], lags[-1] + 1], [0, 0], 'k--', lw=2)

        ax3.set_xlim([-0.50, lag_numbers[-1]])
        ax3.set_xlabel('Lag Number')
        ax3.set_ylabel('Phase')
        ax3.set_ylim([-np.pi - 0.5, np.pi + 0.5])
        ax3.set_yticks(np.linspace(-np.pi, np.pi, num=7))
        ylabels = [r"-$\pi$", r"-2$\pi$/3", r"-$\pi$/3", "0",
                   r"$\pi$/3", r"2$\pi$/3", r"$\pi$"]
        ax3.set_yticklabels(ylabels)
        if ax is None:
            ax3.yaxis.set_ticks_position('right')
            ax3.yaxis.set_label_position('right')

    # Now plot the power spectrum panel as necessary
    if ((ax is not None) and (panel == 3)):
        ax4 = ax

    if (ax4 is not None):
        ax4.plot(vels, acfFFT, marker='o', lw=2)
        ax4.set_xlabel(r'Velocity (m/s)')
        ax4.set_ylabel('Power Spectrum')
        if ax is None:
            ax4.yaxis.set_ticks_position('right')
            ax4.yaxis.set_label_position('right')
            ax4.get_yaxis().get_offset_text().set_x(1)
            ax4.yaxis.set_major_locator(MaxNLocator(prune='upper'))


    #handle the outputs
    rad = pydarn.radar.network().getRadarById(myBeam.stid).code[0]
    if png and (ax is None):
        if not show:
            canvas = FigureCanvasAgg(fig)
        if xcf:
            fig.savefig('XCF_' +
                        myBeam.time.strftime("%Y%m%d_%H%M%S_UT") +
                        '_' + rad +'_gate' + str(gate) + '.png')
        else:
            fig.savefig('ACF_' +
                        myBeam.time.strftime("%Y%m%d_%H%M%S_UT") +
                        '_' + rad +'_gate' + str(gate) + '.png')
    if pdf and (ax is None):
        if not show:
            canvas = FigureCanvasAgg(fig)
        if xcf:
            fig.savefig('XCF_' +
                        myBeam.time.strftime("%Y%m%d_%H%M%S_UT") +
                        '_' + rad +'_gate' + str(gate) + '.pdf')
        else:
            fig.savefig('ACF_' +
                        myBeam.time.strftime("%Y%m%d_%H%M%S_UT") +
                        '_' + rad +'_gate' + str(gate) + '.pdf')
    if show and (ax is None):
        fig.show()