Exemple #1
0
    def __call__(self, value, clip=None):
        if clip is None:
            clip = self.clip

        if cbook.iterable(value):
            vtype = 'array'
            val = ma.asarray(value).astype(npy.float)
        else:
            vtype = 'scalar'
            val = ma.array([value]).astype(npy.float)

        self.autoscale_None(val)
        vmin, vmax = self.vmin, self.vmax
        if vmin > vmax:
            raise ValueError("minvalue must be less than or equal to maxvalue")
        elif vmin<=0:
            raise ValueError("values must all be positive")
        elif vmin==vmax:
            return 0.0 * val
        else:
            if clip:
                mask = ma.getmask(val)
                val = ma.array(npy.clip(val.filled(vmax), vmin, vmax),
                                mask=mask)
            result = (ma.log(val)-npy.log(vmin))/(npy.log(vmax)-npy.log(vmin))
        if vtype == 'scalar':
            result = result[0]
        return result
Exemple #2
0
    def __call__(self, value, clip=None):
        if clip is None:
            clip = self.clip

        if cbook.iterable(value):
            vtype = 'array'
            val = ma.asarray(value).astype(npy.float)
        else:
            vtype = 'scalar'
            val = ma.array([value]).astype(npy.float)

        self.autoscale_None(val)
        vmin, vmax = self.vmin, self.vmax
        if vmin > vmax:
            raise ValueError("minvalue must be less than or equal to maxvalue")
        elif vmin <= 0:
            raise ValueError("values must all be positive")
        elif vmin == vmax:
            return 0.0 * val
        else:
            if clip:
                mask = ma.getmask(val)
                val = ma.array(npy.clip(val.filled(vmax), vmin, vmax),
                               mask=mask)
            result = (ma.log(val) - npy.log(vmin)) / (npy.log(vmax) -
                                                      npy.log(vmin))
        if vtype == 'scalar':
            result = result[0]
        return result
Exemple #3
0
Z1 = bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0)
Z2 = bivariate_normal(X, Y, 1.5, 0.5, 1, 1)
Z = 10 * (Z1 - Z2)

# interior badmask doesn't work yet for filled contours
if test_masking:
    badmask = zeros(shape(Z))

    badmask[5,5] = 1
    badmask[5,6] = 1
    Z[5,5] = 0
    Z[5,6] = 0

    badmask[0,0] = 1
    Z[0,0] = 0
    Z = ma.array(Z, mask=badmask)

# We are using automatic selection of contour levels;
# this is usually not such a good idea, because they don't
# occur on nice boundaries, but we do it here for purposes
# of illustration.
CS = contourf(X, Y, Z, 10, # [-1, -0.1, 0, 0.1],
                        #alpha=0.5,
                        cmap=cm.bone,
                        origin=origin)

# Note that in the following, we explicitly pass in a subset of
# the contour levels used for the filled contours.  Alternatively,
# We could pass in additional levels to provide extra resolution.

CS2 = contour(X, Y, Z, CS.levels[::2],