def plotIsoStaImpedance(ax, loc, array, flag, par='abs', pSym='s', pColor=None, addLabel='', zorder=1): appResFact = 1/(8*np.pi**2*10**(-7)) treshold = 1.0 # 1 meter indUniSta = np.sqrt(np.sum((array[['x','y']].view((float,2))-loc)**2,axis=1)) < treshold freq = array['freq'][indUniSta] if par == 'abs': zPlot = np.abs(array[flag][indUniSta]) elif par == 'real': zPlot = np.real(array[flag][indUniSta]) elif par == 'imag': zPlot = np.imag(array[flag][indUniSta]) elif par == 'res': zPlot = (appResFact/freq)*np.abs(array[flag][indUniSta])**2 elif par == 'phs': zPlot = np.arctan2(array[flag][indUniSta].imag,array[flag][indUniSta].real)*(180/np.pi) if not pColor: if 'xx' in flag: lab = 'XX' pColor = 'g' elif 'xy' in flag: lab = 'XY' pColor = 'r' elif 'yx' in flag: lab = 'YX' pColor = 'b' elif 'yy' in flag: lab = 'YY' pColor = 'y' ax.plot(freq,zPlot,color=pColor,marker=pSym,label=flag+addLabel,zorder=zorder)
def plotIsoStaImpedance(ax, loc, array, flag, par="abs", pSym="s", pColor=None, addLabel="", zorder=1): appResFact = 1 / (8 * np.pi**2 * 10**(-7)) treshold = 1.0 # 1 meter indUniSta = (np.sqrt( np.sum((array[["x", "y"]].copy().view( (float, 2)) - loc)**2, axis=1)) < treshold) freq = array["freq"][indUniSta] if par == "abs": zPlot = np.abs(array[flag][indUniSta]) elif par == "real": zPlot = np.real(array[flag][indUniSta]) elif par == "imag": zPlot = np.imag(array[flag][indUniSta]) elif par == "res": zPlot = (appResFact / freq) * np.abs(array[flag][indUniSta])**2 elif par == "phs": zPlot = np.arctan2(array[flag][indUniSta].imag, array[flag][indUniSta].real) * (180 / np.pi) if not pColor: if "xx" in flag: lab = "XX" pColor = "g" elif "xy" in flag: lab = "XY" pColor = "r" elif "yx" in flag: lab = "YX" pColor = "b" elif "yy" in flag: lab = "YY" pColor = "y" ax.plot(freq, zPlot, color=pColor, marker=pSym, label=flag + addLabel, zorder=zorder)
def plotIsoStaImpedance(ax, loc, array, flag, par='abs', pSym='s', pColor=None, addLabel='', zorder=1): appResFact = 1 / (8 * np.pi**2 * 10**(-7)) treshold = 1.0 # 1 meter indUniSta = np.sqrt( np.sum((array[['x', 'y']].view( (float, 2)) - loc)**2, axis=1)) < treshold freq = array['freq'][indUniSta] if par == 'abs': zPlot = np.abs(array[flag][indUniSta]) elif par == 'real': zPlot = np.real(array[flag][indUniSta]) elif par == 'imag': zPlot = np.imag(array[flag][indUniSta]) elif par == 'res': zPlot = (appResFact / freq) * np.abs(array[flag][indUniSta])**2 elif par == 'phs': zPlot = np.arctan2(array[flag][indUniSta].imag, array[flag][indUniSta].real) * (180 / np.pi) if not pColor: if 'xx' in flag: lab = 'XX' pColor = 'g' elif 'xy' in flag: lab = 'XY' pColor = 'r' elif 'yx' in flag: lab = 'YX' pColor = 'b' elif 'yy' in flag: lab = 'YY' pColor = 'y' ax.plot(freq, zPlot, color=pColor, marker=pSym, label=flag + addLabel, zorder=zorder)
def update_v(): global detv detv=0 for i in xrange(1,len(x),-1): for j in xrange(1,len(y),-1): if (i==len(x)/3or i==len(x)*2/3) and len(y)/3<j<len(y)*2/3: continue tmp=(v[i-1][j]+v[i+1][j]+v[i][j-1]+v[i][j+1])/4 detv+=numpy.abs(tmp-v[i][j]) v[i][j]=tmp
def update_V(): global detV detV = 0 for i in xrange(1, len(X) - 1): for j in xrange(1, len(Y) - 1): if (i==len(X)/3 or i==len(X)*2/3) and len(Y)/3<j<len(Y)*2/3: continue tmp = (V[i-1][j] + V[i+1][j] + V[i][j-1] + V[i][j+1]) / 4 detV += numpy.abs(tmp - V[i][j]) V[i][j] = tmp
def plotIsoFreqNStipper(ax,freq,array,flag,par='abs',colorbar=True,colorNorm='SymLog',cLevel=True,contour=True): indUniFreq = np.where(freq==array['freq']) x, y = array['x'][indUniFreq],array['y'][indUniFreq] if par == 'abs': cmap = plt.get_cmap('OrRd_r')#seismic') zPlot = np.abs(array[flag][indUniFreq]) if cLevel: level = np.logspace(-4,0,33) clevel = np.logspace(-4,0,5) else: level = np.linspace(zPlot.min(),zPlot.max(),100) clevel = np.linspace(zPlot.min(),zPlot.max(),10) if colorNorm=='SymLog': plotNorm = colors.LogNorm() else: plotNorm = colors.Normalize() elif par == 'real': cmap = plt.get_cmap('RdYlBu') zPlot = np.real(array[flag][indUniFreq]) if cLevel: level = np.concatenate((-np.logspace(0,-4,33),np.logspace(-4,0,33))) clevel = np.concatenate((-np.logspace(0,-4,5),np.logspace(-4,0,5))) else: level = np.linspace(zPlot.min(),zPlot.max(),100) clevel = np.linspace(zPlot.min(),zPlot.max(),10) if colorNorm=='SymLog': plotNorm = colors.SymLogNorm(1e-4,linscale=2) else: plotNorm = colors.Normalize() elif par == 'imag': cmap = plt.get_cmap('RdYlBu') zPlot = np.imag(array[flag][indUniFreq]) if cLevel: level = np.concatenate((-np.logspace(0,-4,33),np.logspace(-4,0,33))) clevel = np.concatenate((-np.logspace(0,-4,5),np.logspace(-4,0,5))) else: level = np.linspace(zPlot.min(),zPlot.max(),100) clevel = np.linspace(zPlot.min(),zPlot.max(),10) if colorNorm=='SymLog': plotNorm = colors.SymLogNorm(1e-4,linscale=2) else: plotNorm = colors.Normalize() if contour: cs = ax.tricontourf(x,y,zPlot,levels=level,cmap=cmap,norm=plotNorm)#,extend='both') else: uniX,uniY = np.unique(x),np.unique(y) X,Y = np.meshgrid(np.append(uniX-25,uniX[-1]+25),np.append(uniY-25,uniY[-1]+25)) cs = ax.pcolor(X,Y,np.reshape(zPlot,(len(uniY),len(uniX))),levels=level,cmap=cmap,norm=plotNorm,edgecolors='k', linewidths=0.5) if colorbar: plt.colorbar(cs,cax=ax.cax,ticks=clevel,format='%1.2e') ax.set_title(flag+' '+par,fontsize=8)
# file_for_decompression = np.transpose(file_for_decompression) return np.array(row_idft) if __name__ == '__main__': types = ['.jpg'] # Making the list of possible file types output_path = 'AlbertBadretdinovOutputs' create_folder(output_path) for file_path in glob.glob( "input" + "/*", recursive=True): # And for every file of the type do file = mpimg.imread(file_path) compressed = fftc(file) compressed_output_path = output_path + '/' + file_path[ 6:-4] + 'Compressed' + types[0] comp_save = np.log(np.abs(compressed)) mpimg.imsave(compressed_output_path, comp_save, cmap='gray', vmin=0, vmax=np.amax(comp_save)) decompressed = fftdc(compressed) decompressed_output_path = output_path + '/' + file_path[ 6:-4] + 'Decompressed' + types[0] decomp_save = np.log(np.abs(decompressed)) mpimg.imsave(decompressed_output_path, decomp_save, cmap='gray', vmin=0, vmax=decomp_save.max())
def plotIsoFreqNSDiff( ax, freq, arrayList, flag, par="abs", colorbar=True, cLevel=True, mask=None, contourLine=True, useLog=False, ): indUniFreq0 = np.where(freq == arrayList[0]["freq"]) indUniFreq1 = np.where(freq == arrayList[1]["freq"]) seicmap = plt.get_cmap("RdYlBu") # seismic') x, y = arrayList[0]["x"][indUniFreq0], arrayList[0]["y"][indUniFreq0] if par == "abs": if useLog: zPlot = (np.log10(np.abs(arrayList[0][flag][indUniFreq0])) - np.log10(np.abs(arrayList[1][flag][indUniFreq1])) ) / np.log10(np.abs(arrayList[1][flag][indUniFreq1])) else: zPlot = (np.abs(arrayList[0][flag][indUniFreq0]) - np.abs(arrayList[1][flag][indUniFreq1])) / np.abs( arrayList[1][flag][indUniFreq1]) if mask: maskInd = np.logical_or( np.abs(arrayList[0][flag][indUniFreq0]) < 1e-3, np.abs(arrayList[1][flag][indUniFreq1]) < 1e-3, ) zPlot = np.ma.array(zPlot) zPlot[maskInd] = mask if cLevel: level = np.arange(-200, 201, 10) clevel = np.arange(-200, 201, 25) else: level = np.linspace(zPlot.min(), zPlot.max(), 100) clevel = np.linspace(zPlot.min(), zPlot.max(), 10) elif par == "real": if useLog: zPlot = ( np.log10(np.real(arrayList[0][flag][indUniFreq0])) - np.log10(np.real(arrayList[1][flag][indUniFreq1]))) / np.log10( np.abs((np.real(arrayList[1][flag][indUniFreq1])))) else: zPlot = (np.real(arrayList[0][flag][indUniFreq0]) - np.real(arrayList[1][flag][indUniFreq1])) / np.abs( (np.real(arrayList[1][flag][indUniFreq1]))) if mask: maskInd = np.logical_or( np.abs(np.real(arrayList[0][flag][indUniFreq0])) < 1e-3, np.abs(np.real(arrayList[1][flag][indUniFreq1])) < 1e-3, ) zPlot = np.ma.array(zPlot) zPlot[maskInd] = mask if cLevel: level = np.arange(-200, 201, 10) clevel = np.arange(-200, 201, 25) else: level = np.linspace(zPlot.min(), zPlot.max(), 100) clevel = np.linspace(zPlot.min(), zPlot.max(), 10) elif par == "imag": if useLog: zPlot = ( np.log10(np.imag(arrayList[0][flag][indUniFreq0])) - np.log10(np.imag(arrayList[1][flag][indUniFreq1]))) / np.log10( np.abs((np.imag(arrayList[1][flag][indUniFreq1])))) else: zPlot = (np.imag(arrayList[0][flag][indUniFreq0]) - np.imag(arrayList[1][flag][indUniFreq1])) / np.abs( (np.imag(arrayList[1][flag][indUniFreq1]))) if mask: maskInd = np.logical_or( np.abs(np.imag(arrayList[0][flag][indUniFreq0])) < 1e-3, np.abs(np.imag(arrayList[1][flag][indUniFreq1])) < 1e-3, ) zPlot = np.ma.array(zPlot) zPlot[maskInd] = mask if cLevel: level = np.arange(-200, 201, 10) clevel = np.arange(-200, 201, 25) else: level = np.linspace(zPlot.min(), zPlot.max(), 100) clevel = np.linspace(zPlot.min(), zPlot.max(), 10) cs = ax.tricontourf( x, y, zPlot * 100, levels=level * 100, cmap=seicmap, extend="both") # ,norm=colors.SymLogNorm(1e-2,linscale=2)) if contourLine: csl = ax.tricontour(x, y, zPlot * 100, levels=clevel * 100, colors="k") plt.clabel(csl, fontsize=7, inline=1, fmt="%1.1e", inline_spacing=10) if colorbar: cb = plt.colorbar(cs, cax=ax.cax, ticks=clevel * 100, format="%1.1e") for t in cb.ax.get_yticklabels(): t.set_rotation(60) t.set_fontsize(8) ax.set_title(flag + " " + par, fontsize=8)
def plotIsoFreqNSimpedance( ax, freq, array, flag, par="abs", colorbar=True, colorNorm="SymLog", cLevel=True, contour=True, ): indUniFreq = np.where(freq == array["freq"]) x, y = array["x"][indUniFreq], array["y"][indUniFreq] if par == "abs": zPlot = np.abs(array[flag][indUniFreq]) cmap = plt.get_cmap("OrRd_r") # seismic') level = np.logspace(0, -5, 31) clevel = np.logspace(0, -4, 5) plotNorm = colors.LogNorm() elif par == "real": zPlot = np.real(array[flag][indUniFreq]) cmap = plt.get_cmap("RdYlBu") if cLevel: level = np.concatenate( (-np.logspace(0, -10, 31), np.logspace(-10, 0, 31))) clevel = np.concatenate( (-np.logspace(0, -8, 5), np.logspace(-8, 0, 5))) else: level = np.linspace(zPlot.min(), zPlot.max(), 100) clevel = np.linspace(zPlot.min(), zPlot.max(), 10) if colorNorm == "SymLog": plotNorm = colors.SymLogNorm(1e-10, linscale=2) else: plotNorm = colors.Normalize() elif par == "imag": zPlot = np.imag(array[flag][indUniFreq]) cmap = plt.get_cmap("RdYlBu") level = np.concatenate( (-np.logspace(0, -10, 31), np.logspace(-10, 0, 31))) clevel = np.concatenate((-np.logspace(0, -8, 5), np.logspace(-8, 0, 5))) plotNorm = colors.SymLogNorm(1e-10, linscale=2) if cLevel: level = np.concatenate( (-np.logspace(0, -10, 31), np.logspace(-10, 0, 31))) clevel = np.concatenate( (-np.logspace(0, -8, 5), np.logspace(-8, 0, 5))) else: level = np.linspace(zPlot.min(), zPlot.max(), 100) clevel = np.linspace(zPlot.min(), zPlot.max(), 10) if colorNorm == "SymLog": plotNorm = colors.SymLogNorm(1e-10, linscale=2) elif colorNorm == "Lin": plotNorm = colors.Normalize() if contour: cs = ax.tricontourf(x, y, zPlot, levels=level, cmap=cmap, norm=plotNorm) # ,extend='both') else: uniX, uniY = np.unique(x), np.unique(y) X, Y = np.meshgrid(np.append(uniX - 25, uniX[-1] + 25), np.append(uniY - 25, uniY[-1] + 25)) cs = ax.pcolor(X, Y, np.reshape(zPlot, (len(uniY), len(uniX))), cmap=cmap, norm=plotNorm) if colorbar: plt.colorbar(cs, cax=ax.cax, ticks=clevel, format="%1.2e") ax.set_title(flag + " " + par, fontsize=8) return cs
def plotPsudoSectNSDiff( ax, sectDict, arrayList, flag, par="abs", colorbar=True, colorNorm="SymLog", cLevel=None, contour=True, mask=None, useLog=False, ): def sortInArr(arr): return np.sort(arr, order=["freq", "x", "y", "z"]) # Find the index for the slice indSect0 = np.where( sectDict.values()[0] == arrayList[0][sectDict.keys()[0]]) indSect1 = np.where( sectDict.values()[0] == arrayList[1][sectDict.keys()[0]]) # Extract and sort the mats arr0 = sortInArr(arrayList[0][indSect0]) arr1 = sortInArr(arrayList[1][indSect1]) # Define the plot axes if "x" in sectDict.keys()[0]: x0 = arr0["y"] x1 = arr1["y"] else: x0 = arr0["x"] x1 = arr1["x"] y0 = arr0["freq"] y1 = arr1["freq"] if par == "abs": if useLog: zPlot = (np.log10(np.abs(arr0[flag])) - np.log10(np.abs( arr1[flag]))) / np.log10(np.abs(arr1[flag])) else: zPlot = (np.abs(arr0[flag]) - np.abs(arr1[flag])) / np.abs( arr1[flag]) if mask: maskInd = np.logical_or( np.abs(arr0[flag]) < 1e-3, np.abs(arr1[flag]) < 1e-3) zPlot = np.ma.array(zPlot) zPlot[maskInd] = mask cmap = plt.get_cmap("RdYlBu") # seismic) elif par == "ares": arF = 1 / (8 * np.pi**2 * 10**(-7)) if useLog: zPlot = (np.log10( (arF / arr0["freq"]) * np.abs(arr0[flag])**2) - np.log10( (arF / arr1["freq"]) * np.abs(arr1[flag])**2)) / np.log10( (arF / arr1["freq"]) * np.abs(arr1[flag])**2) else: zPlot = ((arF / arr0["freq"]) * np.abs(arr0[flag])**2 - (arF / arr1["freq"]) * np.abs(arr1[flag])**2) / ( (arF / arr1["freq"]) * np.abs(arr1[flag])**2) if mask: maskInd = np.logical_or( np.abs(arr0[flag]) < 1e-3, np.abs(arr1[flag]) < 1e-3) zPlot = np.ma.array(zPlot) zPlot[maskInd] = mask cmap = plt.get_cmap("Spectral") # seismic) elif par == "aphs": if useLog: zPlot = (np.log10( np.arctan2(arr0[flag].imag, arr0[flag].real) * (180 / np.pi)) - np.log10( np.arctan2(arr1[flag].imag, arr1[flag].real) * (180 / np.pi))) / np.log10( np.arctan2(arr1[flag].imag, arr1[flag].real) * (180 / np.pi)) else: zPlot = (np.arctan2(arr0[flag].imag, arr0[flag].real) * (180 / np.pi) - np.arctan2(arr1[flag].imag, arr1[flag].real) * (180 / np.pi)) / ( np.arctan2(arr1[flag].imag, arr1[flag].real) * (180 / np.pi)) if mask: maskInd = np.logical_or( np.abs(arr0[flag]) < 1e-3, np.abs(arr1[flag]) < 1e-3) zPlot = np.ma.array(zPlot) zPlot[maskInd] = mask cmap = plt.get_cmap("Spectral") # seismic) elif par == "real": if useLog: zPlot = (np.log10(arr0[flag].real) - np.log10(arr1[flag].real)) / np.log10(arr1[flag].real) else: zPlot = (arr0[flag].real - arr1[flag].real) / arr1[flag].real if mask: maskInd = np.logical_or(arr0[flag].real < 1e-3, arr1[flag].real < 1e-3) zPlot = np.ma.array(zPlot) zPlot[maskInd] = mask cmap = plt.get_cmap("Spectral") # ('Spectral') elif par == "imag": if useLog: zPlot = (np.log10(arr0[flag].imag) - np.log10(arr1[flag].imag)) / np.log10(arr1[flag].imag) else: zPlot = (arr0[flag].imag - arr1[flag].imag) / arr1[flag].imag if mask: maskInd = np.logical_or(arr0[flag].imag < 1e-3, arr1[flag].imag < 1e-3) zPlot = np.ma.array(zPlot) zPlot[maskInd] = mask cmap = plt.get_cmap("Spectral") # ('RdYlBu') if cLevel: zMax = np.log10(cLevel[1]) zMin = np.log10(cLevel[0]) else: zMax = np.ceil(np.log10(np.abs(zPlot).max())) zMin = np.floor(np.log10(np.abs(zPlot).min())) if colorNorm == "SymLog": level = np.concatenate(( -np.logspace( zMax, zMin - 0.125, (zMax - zMin) * 8 + 1, endpoint=True), np.logspace(zMin - 0.125, zMax, (zMax - zMin) * 8 + 1, endpoint=True), )) clevel = np.concatenate(( -np.logspace(zMax, zMin, (zMax - zMin) * 1 + 1, endpoint=True), np.logspace(zMin, zMax, (zMax - zMin) * 1 + 1, endpoint=True), )) plotNorm = colors.SymLogNorm(np.abs(level).min(), linscale=0.1) elif colorNorm == "Lin": if cLevel: level = np.arange(cLevel[0], cLevel[1] + 0.1, (cLevel[1] - cLevel[0]) / 50.0) clevel = np.arange(cLevel[0], cLevel[1] + 0.1, (cLevel[1] - cLevel[0]) / 10.0) else: level = np.arange(zPlot.min(), zPlot.max(), (zPlot.max() - zPlot.min()) / 50.0) clevel = np.arange(zPlot.min(), zPlot.max(), (zPlot.max() - zPlot.min()) / 10.0) plotNorm = colors.Normalize() elif colorNorm == "Log": level = np.logspace(zMin - 0.125, zMax, (zMax - zMin) * 8 + 1, endpoint=True) clevel = np.logspace(zMin, zMax, (zMax - zMin) * 2 + 1, endpoint=True) plotNorm = colors.LogNorm() if contour: cs = ax.tricontourf( x0, y0, zPlot * 100, levels=level * 100, cmap=cmap, norm=plotNorm, extend="both", ) # ,extend='both') else: uniX, uniY = np.unique(x0), np.unique(y0) X, Y = np.meshgrid(np.append(uniX - 25, uniX[-1] + 25), np.append(uniY - 25, uniY[-1] + 25)) cs = ax.pcolor(X, Y, np.reshape(zPlot, (len(uniY), len(uniX))), cmap=cmap, norm=plotNorm) if colorbar: csB = plt.colorbar(cs, cax=ax.cax, ticks=clevel * 100, format="%1.2e") # csB.on_mappable_changed(cs) ax.set_title(flag + " " + par + " diff", fontsize=8) return cs, csB return cs, None
def plotPsudoSectNSimpedance( ax, sectDict, array, flag, par="abs", colorbar=True, colorNorm="None", cLevel=None, contour=True, ): indSect = np.where(sectDict.values()[0] == array[sectDict.keys()[0]]) # Define the plot axes if "x" in sectDict.keys()[0]: x = array["y"][indSect] else: x = array["x"][indSect] y = array["freq"][indSect] if par == "abs": zPlot = np.abs(array[flag][indSect]) cmap = plt.get_cmap("OrRd_r") # seismic') if cLevel: level = np.logspace(0, -5, 31, endpoint=True) clevel = np.logspace(0, -4, 5, endpoint=True) else: level = np.linspace(zPlot.min(), zPlot.max(), 100, endpoint=True) clevel = np.linspace(zPlot.min(), zPlot.max(), 10, endpoint=True) elif par == "ares": zPlot = np.abs(array[flag][indSect])**2 / (8 * np.pi**2 * 10**(-7) * array["freq"][indSect]) cmap = plt.get_cmap("RdYlBu") # seismic) if cLevel: zMax = np.log10(cLevel[1]) zMin = np.log10(cLevel[0]) else: zMax = np.ceil(np.log10(np.abs(zPlot).max())) zMin = np.floor(np.log10(np.abs(zPlot).min())) level = np.logspace(zMin, zMax, (zMax - zMin) * 8 + 1, endpoint=True) clevel = np.logspace(zMin, zMax, (zMax - zMin) * 2 + 1, endpoint=True) plotNorm = colors.LogNorm() elif par == "aphs": zPlot = np.arctan2(array[flag][indSect].imag, array[flag][indSect].real) * (180 / np.pi) cmap = plt.get_cmap("RdYlBu") # seismic) if cLevel: zMax = cLevel[1] zMin = cLevel[0] else: zMax = np.ceil(zPlot).max() zMin = np.floor(zPlot).min() level = np.arange(zMin, zMax + 0.1, 1) clevel = np.arange(zMin, zMax + 0.1, 10) plotNorm = colors.Normalize() elif par == "real": zPlot = np.real(array[flag][indSect]) cmap = plt.get_cmap("Spectral") # ('RdYlBu') if cLevel: zMax = np.log10(cLevel[1]) zMin = np.log10(cLevel[0]) else: zMax = np.ceil(np.log10(np.abs(zPlot).max())) zMin = np.floor(np.log10(np.abs(zPlot).min())) level = np.concatenate(( -np.logspace( zMax, zMin - 0.125, (zMax - zMin) * 8 + 1, endpoint=True), np.logspace(zMin - 0.125, zMax, (zMax - zMin) * 8 + 1, endpoint=True), )) clevel = np.concatenate(( -np.logspace(zMax, zMin, (zMax - zMin) * 1 + 1, endpoint=True), np.logspace(zMin, zMax, (zMax - zMin) * 1 + 1, endpoint=True), )) plotNorm = colors.SymLogNorm(np.abs(level).min(), linscale=0.1) elif par == "imag": zPlot = np.imag(array[flag][indSect]) cmap = plt.get_cmap("Spectral") # ('RdYlBu') if cLevel: zMax = np.log10(cLevel[1]) zMin = np.log10(cLevel[0]) else: zMax = np.ceil(np.log10(np.abs(zPlot).max())) zMin = np.floor(np.log10(np.abs(zPlot).min())) level = np.concatenate(( -np.logspace( zMax, zMin - 0.125, (zMax - zMin) * 8 + 1, endpoint=True), np.logspace(zMin - 0.125, zMax, (zMax - zMin) * 8 + 1, endpoint=True), )) clevel = np.concatenate(( -np.logspace(zMax, zMin, (zMax - zMin) * 1 + 1, endpoint=True), np.logspace(zMin, zMax, (zMax - zMin) * 1 + 1, endpoint=True), )) plotNorm = colors.SymLogNorm(np.abs(level).min(), linscale=0.1) if colorNorm == "SymLog": plotNorm = colors.SymLogNorm(np.abs(level).min(), linscale=0.1) elif colorNorm == "Lin": plotNorm = colors.Normalize() elif colorNorm == "Log": plotNorm = colors.LogNorm() if contour: cs = ax.tricontourf(x, y, zPlot, levels=level, cmap=cmap, norm=plotNorm) # ,extend='both') else: uniX, uniY = np.unique(x), np.unique(y) X, Y = np.meshgrid(np.append(uniX - 25, uniX[-1] + 25), np.append(uniY - 25, uniY[-1] + 25)) cs = ax.pcolor(X, Y, np.reshape(zPlot, (len(uniY), len(uniX))), cmap=cmap, norm=plotNorm) if colorbar: csB = plt.colorbar(cs, cax=ax.cax, ticks=clevel, format="%1.2e") # csB.on_mappable_changed(cs) ax.set_title(flag + " " + par, fontsize=8) return cs, csB return cs, None
def plotIsoFreqNStipper(ax, freq, array, flag, par='abs', colorbar=True, colorNorm='SymLog', cLevel=True, contour=True): indUniFreq = np.where(freq == array['freq']) x, y = array['x'][indUniFreq], array['y'][indUniFreq] if par == 'abs': cmap = plt.get_cmap('OrRd_r') #seismic') zPlot = np.abs(array[flag][indUniFreq]) if cLevel: level = np.logspace(-4, 0, 33) clevel = np.logspace(-4, 0, 5) else: level = np.linspace(zPlot.min(), zPlot.max(), 100) clevel = np.linspace(zPlot.min(), zPlot.max(), 10) if colorNorm == 'SymLog': plotNorm = colors.LogNorm() else: plotNorm = colors.Normalize() elif par == 'real': cmap = plt.get_cmap('RdYlBu') zPlot = np.real(array[flag][indUniFreq]) if cLevel: level = np.concatenate( (-np.logspace(0, -4, 33), np.logspace(-4, 0, 33))) clevel = np.concatenate( (-np.logspace(0, -4, 5), np.logspace(-4, 0, 5))) else: level = np.linspace(zPlot.min(), zPlot.max(), 100) clevel = np.linspace(zPlot.min(), zPlot.max(), 10) if colorNorm == 'SymLog': plotNorm = colors.SymLogNorm(1e-4, linscale=2) else: plotNorm = colors.Normalize() elif par == 'imag': cmap = plt.get_cmap('RdYlBu') zPlot = np.imag(array[flag][indUniFreq]) if cLevel: level = np.concatenate( (-np.logspace(0, -4, 33), np.logspace(-4, 0, 33))) clevel = np.concatenate( (-np.logspace(0, -4, 5), np.logspace(-4, 0, 5))) else: level = np.linspace(zPlot.min(), zPlot.max(), 100) clevel = np.linspace(zPlot.min(), zPlot.max(), 10) if colorNorm == 'SymLog': plotNorm = colors.SymLogNorm(1e-4, linscale=2) else: plotNorm = colors.Normalize() if contour: cs = ax.tricontourf(x, y, zPlot, levels=level, cmap=cmap, norm=plotNorm) #,extend='both') else: uniX, uniY = np.unique(x), np.unique(y) X, Y = np.meshgrid(np.append(uniX - 25, uniX[-1] + 25), np.append(uniY - 25, uniY[-1] + 25)) cs = ax.pcolor(X, Y, np.reshape(zPlot, (len(uniY), len(uniX))), levels=level, cmap=cmap, norm=plotNorm, edgecolors='k', linewidths=0.5) if colorbar: plt.colorbar(cs, cax=ax.cax, ticks=clevel, format='%1.2e') ax.set_title(flag + ' ' + par, fontsize=8)
def plotIsoFreqNSDiff(ax,freq,arrayList,flag,par='abs',colorbar=True,cLevel=True,mask=None,contourLine=True,useLog=False): indUniFreq0 = np.where(freq==arrayList[0]['freq']) indUniFreq1 = np.where(freq==arrayList[1]['freq']) seicmap = plt.get_cmap('RdYlBu')#seismic') x, y = arrayList[0]['x'][indUniFreq0],arrayList[0]['y'][indUniFreq0] if par == 'abs': if useLog: zPlot = (np.log10(np.abs(arrayList[0][flag][indUniFreq0])) - np.log10(np.abs(arrayList[1][flag][indUniFreq1])))/np.log10(np.abs(arrayList[1][flag][indUniFreq1])) else: zPlot = (np.abs(arrayList[0][flag][indUniFreq0]) - np.abs(arrayList[1][flag][indUniFreq1]))/np.abs(arrayList[1][flag][indUniFreq1]) if mask: maskInd = np.logical_or(np.abs(arrayList[0][flag][indUniFreq0])< 1e-3,np.abs(arrayList[1][flag][indUniFreq1]) < 1e-3) zPlot = np.ma.array(zPlot) zPlot[maskInd] = mask if cLevel: level = np.arange(-200,201,10) clevel = np.arange(-200,201,25) else: level = np.linspace(zPlot.min(),zPlot.max(),100) clevel = np.linspace(zPlot.min(),zPlot.max(),10) elif par == 'real': if useLog: zPlot = (np.log10(np.real(arrayList[0][flag][indUniFreq0])) -np.log10(np.real(arrayList[1][flag][indUniFreq1])))/np.log10(np.abs((np.real(arrayList[1][flag][indUniFreq1])))) else: zPlot = (np.real(arrayList[0][flag][indUniFreq0]) -np.real(arrayList[1][flag][indUniFreq1]))/np.abs((np.real(arrayList[1][flag][indUniFreq1]))) if mask: maskInd = np.logical_or(np.abs(np.real(arrayList[0][flag][indUniFreq0])) < 1e-3,np.abs(np.real(arrayList[1][flag][indUniFreq1])) < 1e-3) zPlot = np.ma.array(zPlot) zPlot[maskInd] = mask if cLevel: level = np.arange(-200,201,10) clevel = np.arange(-200,201,25) else: level = np.linspace(zPlot.min(),zPlot.max(),100) clevel = np.linspace(zPlot.min(),zPlot.max(),10) elif par == 'imag': if useLog: zPlot = (np.log10(np.imag(arrayList[0][flag][indUniFreq0])) -np.log10(np.imag(arrayList[1][flag][indUniFreq1])))/np.log10(np.abs((np.imag(arrayList[1][flag][indUniFreq1])))) else: zPlot = (np.imag(arrayList[0][flag][indUniFreq0]) -np.imag(arrayList[1][flag][indUniFreq1]))/np.abs((np.imag(arrayList[1][flag][indUniFreq1]))) if mask: maskInd = np.logical_or(np.abs(np.imag(arrayList[0][flag][indUniFreq0])) < 1e-3,np.abs(np.imag(arrayList[1][flag][indUniFreq1])) < 1e-3) zPlot = np.ma.array(zPlot) zPlot[maskInd] = mask if cLevel: level = np.arange(-200,201,10) clevel = np.arange(-200,201,25) else: level = np.linspace(zPlot.min(),zPlot.max(),100) clevel = np.linspace(zPlot.min(),zPlot.max(),10) cs = ax.tricontourf(x,y,zPlot*100,levels=level*100,cmap=seicmap,extend='both') #,norm=colors.SymLogNorm(1e-2,linscale=2)) if contourLine: csl = ax.tricontour(x,y,zPlot*100,levels=clevel*100,colors='k') plt.clabel(csl, fontsize=7, inline=1,fmt='%1.1e',inline_spacing=10) if colorbar: cb = plt.colorbar(cs,cax=ax.cax,ticks=clevel*100,format='%1.1e') for t in cb.ax.get_yticklabels(): t.set_rotation(60) t.set_fontsize(8) ax.set_title(flag+' '+par,fontsize=8)
def plotPsudoSectNSDiff(ax,sectDict,arrayList,flag,par='abs',colorbar=True,colorNorm='SymLog',cLevel=None,contour=True,mask=None,useLog=False): def sortInArr(arr): return np.sort(arr,order=['freq','x','y','z']) # Find the index for the slice indSect0 = np.where(sectDict.values()[0]==arrayList[0][sectDict.keys()[0]]) indSect1 = np.where(sectDict.values()[0]==arrayList[1][sectDict.keys()[0]]) # Extract and sort the mats arr0 = sortInArr(arrayList[0][indSect0]) arr1 = sortInArr(arrayList[1][indSect1]) # Define the plot axes if 'x' in sectDict.keys()[0]: x0 = arr0['y'] x1 = arr1['y'] else: x0 = arr0['x'] x1 = arr1['x'] y0 = arr0['freq'] y1 = arr1['freq'] if par == 'abs': if useLog: zPlot = (np.log10(np.abs(arr0[flag])) - np.log10(np.abs(arr1[flag])))/np.log10(np.abs(arr1[flag])) else: zPlot = (np.abs(arr0[flag]) - np.abs(arr1[flag]))/np.abs(arr1[flag]) if mask: maskInd = np.logical_or(np.abs(arr0[flag])< 1e-3,np.abs(arr1[flag]) < 1e-3) zPlot = np.ma.array(zPlot) zPlot[maskInd] = mask cmap = plt.get_cmap('RdYlBu')#seismic) elif par == 'ares': arF = 1/(8*np.pi**2*10**(-7)) if useLog: zPlot = (np.log10((arF/arr0['freq'])*np.abs(arr0[flag])**2) - np.log10((arF/arr1['freq'])*np.abs(arr1[flag])**2))/np.log10((arF/arr1['freq'])*np.abs(arr1[flag])**2) else: zPlot = ((arF/arr0['freq'])*np.abs(arr0[flag])**2 - (arF/arr1['freq'])*np.abs(arr1[flag])**2)/((arF/arr1['freq'])*np.abs(arr1[flag])**2) if mask: maskInd = np.logical_or(np.abs(arr0[flag])< 1e-3,np.abs(arr1[flag]) < 1e-3) zPlot = np.ma.array(zPlot) zPlot[maskInd] = mask cmap = plt.get_cmap('Spectral')#seismic) elif par == 'aphs': if useLog: zPlot = (np.log10(np.arctan2(arr0[flag].imag,arr0[flag].real)*(180/np.pi)) - np.log10(np.arctan2(arr1[flag].imag,arr1[flag].real)*(180/np.pi)) )/np.log10(np.arctan2(arr1[flag].imag,arr1[flag].real)*(180/np.pi)) else: zPlot = ( np.arctan2(arr0[flag].imag,arr0[flag].real)*(180/np.pi) - np.arctan2(arr1[flag].imag,arr1[flag].real)*(180/np.pi) )/(np.arctan2(arr1[flag].imag,arr1[flag].real)*(180/np.pi)) if mask: maskInd = np.logical_or(np.abs(arr0[flag])< 1e-3,np.abs(arr1[flag]) < 1e-3) zPlot = np.ma.array(zPlot) zPlot[maskInd] = mask cmap = plt.get_cmap('Spectral')#seismic) elif par == 'real': if useLog: zPlot = (np.log10(arr0[flag].real) - np.log10(arr1[flag].real))/np.log10(arr1[flag].real) else: zPlot = (arr0[flag].real - arr1[flag].real)/arr1[flag].real if mask: maskInd = np.logical_or(arr0[flag].real< 1e-3,arr1[flag].real < 1e-3) zPlot = np.ma.array(zPlot) zPlot[maskInd] = mask cmap = plt.get_cmap('Spectral') #('Spectral') elif par == 'imag': if useLog: zPlot = (np.log10(arr0[flag].imag) - np.log10(arr1[flag].imag))/np.log10(arr1[flag].imag) else: zPlot = (arr0[flag].imag - arr1[flag].imag)/arr1[flag].imag if mask: maskInd = np.logical_or(arr0[flag].imag< 1e-3,arr1[flag].imag < 1e-3) zPlot = np.ma.array(zPlot) zPlot[maskInd] = mask cmap = plt.get_cmap('Spectral') #('RdYlBu') if cLevel: zMax = np.log10(cLevel[1]) zMin = np.log10(cLevel[0]) else: zMax = (np.ceil(np.log10(np.abs(zPlot).max()))) zMin = (np.floor(np.log10(np.abs(zPlot).min()))) if colorNorm=='SymLog': level = np.concatenate((-np.logspace(zMax,zMin-.125,(zMax-zMin)*8+1,endpoint=True),np.logspace(zMin-.125,zMax,(zMax-zMin)*8+1,endpoint=True))) clevel = np.concatenate((-np.logspace(zMax,zMin,(zMax-zMin)*1+1,endpoint=True),np.logspace(zMin,zMax,(zMax-zMin)*1+1,endpoint=True))) plotNorm = colors.SymLogNorm(np.abs(level).min(),linscale=0.1) elif colorNorm=='Lin': if cLevel: level = np.arange(cLevel[0],cLevel[1]+.1,(cLevel[1] - cLevel[0])/50.) clevel = np.arange(cLevel[0],cLevel[1]+.1,(cLevel[1] - cLevel[0])/10.) else: level = np.arange(zPlot.min(),zPlot.max(),(zPlot.max() - zPlot.min())/50.) clevel = np.arange(zPlot.min(),zPlot.max(),(zPlot.max() - zPlot.min())/10.) plotNorm = colors.Normalize() elif colorNorm=='Log': level = np.logspace(zMin-.125,zMax,(zMax-zMin)*8+1,endpoint=True) clevel = np.logspace(zMin,zMax,(zMax-zMin)*2+1,endpoint=True) plotNorm = colors.LogNorm() if contour: cs = ax.tricontourf(x0,y0,zPlot*100,levels=level*100,cmap=cmap,norm=plotNorm,extend='both')#,extend='both') else: uniX,uniY = np.unique(x0),np.unique(y0) X,Y = np.meshgrid(np.append(uniX-25,uniX[-1]+25),np.append(uniY-25,uniY[-1]+25)) cs = ax.pcolor(X,Y,np.reshape(zPlot,(len(uniY),len(uniX))),cmap=cmap,norm=plotNorm) if colorbar: csB = plt.colorbar(cs,cax=ax.cax,ticks=clevel*100,format='%1.2e') # csB.on_mappable_changed(cs) ax.set_title(flag+' '+par + ' diff',fontsize=8) return cs, csB return cs,None
def plotPsudoSectNSimpedance(ax,sectDict,array,flag,par='abs',colorbar=True,colorNorm='None',cLevel=None,contour=True): indSect = np.where(sectDict.values()[0]==array[sectDict.keys()[0]]) # Define the plot axes if 'x' in sectDict.keys()[0]: x = array['y'][indSect] else: x = array['x'][indSect] y = array['freq'][indSect] if par == 'abs': zPlot = np.abs(array[flag][indSect]) cmap = plt.get_cmap('OrRd_r')#seismic') if cLevel: level = np.logspace(0,-5,31,endpoint=True) clevel = np.logspace(0,-4,5,endpoint=True) else: level = np.linspace(zPlot.min(),zPlot.max(),100,endpoint=True) clevel = np.linspace(zPlot.min(),zPlot.max(),10,endpoint=True) elif par == 'ares': zPlot = np.abs(array[flag][indSect])**2/(8*np.pi**2*10**(-7)*array['freq'][indSect]) cmap = plt.get_cmap('RdYlBu')#seismic) if cLevel: zMax = np.log10(cLevel[1]) zMin = np.log10(cLevel[0]) else: zMax = (np.ceil(np.log10(np.abs(zPlot).max()))) zMin = (np.floor(np.log10(np.abs(zPlot).min()))) level = np.logspace(zMin,zMax,(zMax-zMin)*8+1,endpoint=True) clevel = np.logspace(zMin,zMax,(zMax-zMin)*2+1,endpoint=True) plotNorm = colors.LogNorm() elif par == 'aphs': zPlot = np.arctan2(array[flag][indSect].imag,array[flag][indSect].real)*(180/np.pi) cmap = plt.get_cmap('RdYlBu')#seismic) if cLevel: zMax = cLevel[1] zMin = cLevel[0] else: zMax = (np.ceil(zPlot).max()) zMin = (np.floor(zPlot).min()) level = np.arange(zMin,zMax+.1,1) clevel = np.arange(zMin,zMax+.1,10) plotNorm = colors.Normalize() elif par == 'real': zPlot = np.real(array[flag][indSect]) cmap = plt.get_cmap('Spectral') #('RdYlBu') if cLevel: zMax = np.log10(cLevel[1]) zMin = np.log10(cLevel[0]) else: zMax = (np.ceil(np.log10(np.abs(zPlot).max()))) zMin = (np.floor(np.log10(np.abs(zPlot).min()))) level = np.concatenate((-np.logspace(zMax,zMin-.125,(zMax-zMin)*8+1,endpoint=True),np.logspace(zMin-.125,zMax,(zMax-zMin)*8+1,endpoint=True))) clevel = np.concatenate((-np.logspace(zMax,zMin,(zMax-zMin)*1+1,endpoint=True),np.logspace(zMin,zMax,(zMax-zMin)*1+1,endpoint=True))) plotNorm = colors.SymLogNorm(np.abs(level).min(),linscale=0.1) elif par == 'imag': zPlot = np.imag(array[flag][indSect]) cmap = plt.get_cmap('Spectral') #('RdYlBu') if cLevel: zMax = np.log10(cLevel[1]) zMin = np.log10(cLevel[0]) else: zMax = (np.ceil(np.log10(np.abs(zPlot).max()))) zMin = (np.floor(np.log10(np.abs(zPlot).min()))) level = np.concatenate((-np.logspace(zMax,zMin-.125,(zMax-zMin)*8+1,endpoint=True),np.logspace(zMin-.125,zMax,(zMax-zMin)*8+1,endpoint=True))) clevel = np.concatenate((-np.logspace(zMax,zMin,(zMax-zMin)*1+1,endpoint=True),np.logspace(zMin,zMax,(zMax-zMin)*1+1,endpoint=True))) plotNorm = colors.SymLogNorm(np.abs(level).min(),linscale=0.1) if colorNorm=='SymLog': plotNorm = colors.SymLogNorm(np.abs(level).min(),linscale=0.1) elif colorNorm=='Lin': plotNorm = colors.Normalize() elif colorNorm=='Log': plotNorm = colors.LogNorm() if contour: cs = ax.tricontourf(x,y,zPlot,levels=level,cmap=cmap,norm=plotNorm)#,extend='both') else: uniX,uniY = np.unique(x),np.unique(y) X,Y = np.meshgrid(np.append(uniX-25,uniX[-1]+25),np.append(uniY-25,uniY[-1]+25)) cs = ax.pcolor(X,Y,np.reshape(zPlot,(len(uniY),len(uniX))),cmap=cmap,norm=plotNorm) if colorbar: csB = plt.colorbar(cs,cax=ax.cax,ticks=clevel,format='%1.2e') # csB.on_mappable_changed(cs) ax.set_title(flag+' '+par,fontsize=8) return cs, csB return cs,None
x = np.array([[0, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 1, 1], [0, 1, 1, 0], [1, 1, 0, 0], [1, 0, 0, 1], [1, 1, 1, 1]]) y = np.array([[0, 1, 0, 0, 0, 1, 0, 0, 1, 1]]).T w = np.random.random((4, 5)) w2 = np.random.random((5, 5)) w3 = np.random.random((5, 1)) for j in xrange(50000): a2 = 1 / (1 + np.exp(-((np.dot(x, w) + 1)))) a3 = 1 / (1 + np.exp(-((np.dot(a2, w2) + 1)))) a4 = 1 / (1 + np.exp(-(np.dot(a3, w3) + 1))) graphicalDataError.append(np.mean(np.abs(y - a4))) graphicalDataEpochs.append(j) print(y.shape, a4.shape) a4delta = (y - a4) * (a4 * (1 - a4)) a3delta = a4delta.dot(w3.T) * (a3 * (1 - a3)) a2delta = a3delta.dot(w2.T) * (a2 * (1 - a2)) w3 += a3.T.dot(a4delta) w2 += a2.T.dot(a3delta) w += x.T.dot(a2delta) print(a4) x = [0, 1, 1, 1]