Exemple #1
0
def sfine2(mom,leps,thk=254,emax=3.4,minor=0,dofit=4,inorm=[1,1,1],doplot=False):
    '''
    dofit==1: fit only thickness, renorm parameters fixed
    minor: minim. value of refer. spectrum to include point in chi2
    '''
    import profit
    inipars=[thk]+inorm
    enxz=enx[enx<emax]
    def zres(pars):
        model1=profit.plate(enxz,[leps,epssi[enx<emax]],pars[:1])
        dif=0
        for i in range(len(mom)):
            dsel=(mom[i]>0)*(enx<emax)
            if minor>0: dsel*=nor[i]>minor
            dif+=((mom[i][dsel]*pars[i+1]-model1[dsel[enx<emax]])**2*nor[i][dsel]).sum()*wnor[i]
        return dif
    from scipy import optimize as op
    if dofit==1: 
        fitpars=op.fmin(lambda p:zres(list(p)+inipars[1:]),inipars[:1],disp=0)
        qpars=inipars[1:]
    else: 
        fitpars=op.fmin(zres,inipars,disp=0)
        qpars=fitpars[1:]
    if doplot:
        from matplotlib import plot as pl
        model1=profit.plate(enxz,[leps,epssi[enx<emax]],fitpars[:1])
        pl.plot(enxz,model1)
        for i in range(len(mom)):
            m=mom[i]
            pl.plot(enx[(m>0)*(enx<emax)],m[(m>0)*(enx<emax)]*qpars[i],'rgm'[i])
    if dofit==1: 
        return fitpars,zres(list(fitpars)+inipars[1:])
    else: 
        return fitpars,zres(fitpars)
Exemple #2
0
def plotData(x, *y):
	colors = ["b","g","r","c","m","y","k"]

	plt.xlabel("timestamp")
	plt.ylabel("values")
	for i in range(len(y)):
		plt.plot(x, y[i], colors[i%7])
	plt.show()
Exemple #3
0
def plot_results(a_plot_list, b_plot_list, k_plot_list, n):
    # plotting the results of the two algorithms against k value and runtime
    plt.plot(k_plot_list, a_plot_list, "r-")
    plt.plot(k_plot_list, b_plot_list, "k-")
    plt.xlabel("Searching Set Size (k value)")
    plt.ylabel("Time (seconds)")
    plt.title(str("Time complexity with data set of size n=" + str(n)))
    red = mpatches.Patch(color="red", label="Linear Search")
    black = mpatches.Patch(color="black", label="Binary Search")
    plt.legend(handles=[red, black])
    plt.grid(True)
    plt.show()
Exemple #4
0
def renorm(preps=[]):
    qcorr=np.array([ 1.40927795,  1.35854274,  1.53249378])
    if (len(preps)==0): #reload
        xpos=[np.loadtxt(indir+a)[:,0] for a in ls1 if a.find('dark')==0]
        drk=[np.loadtxt(indir+a)[:,1] for a in ls1 if a.find('dark')==0]
        ref=[np.loadtxt(indir+a)[:,1] for a in ls1 if a.find('ref')==0]
        nref=np.array(ref[:3])-np.array(drk)
        nref[nref<5]=5
        preps=[l[:8] for l in ls1 if l.find('_00')>0 and l[:2]=='ti']
        
        ratall=[renor([np.loadtxt(indir+a)[:,1] for a in ls1 if a.find(pf)==0]) for pf in preps] 
    band2,bsel2=cb.gettrans(enx,nref,xpos,smot=0.01,skiplowest=7,rep=1,scale=1/qcorr,spow=1)
    mom2all=[np.sum([rt[i][bsel2[i]].dot(band2[i])*sior for i in range(3)],axis=0) for rt in ratall]
    esel*=enx>1.35
    ok=[pl.plot(enx[esel],zoo[esel]) for zoo in mom2all[2:-1]]

    nor=[nref[i][bsel2[i]].dot(band2[i]) for i in range(len(nref))]
    wnor=[nref[i].sum()/1e4/band2[i].sum() for i in range(len(nref))]

    locfile="tio2_tl-eps.mat"
    en2,er,ei=np.genfromtxt("http://physics.muni.cz/~munz/manip/CVD/"+locfile,skip_header=3)[::-1].T
    epstio=lambda e:ip.interp1d(en2,er)(e)+1j*ip.interp1d(en2,ei)(e)

    conv1=[  2.56081863e+02,  8.21570652e-02]
    allfit=[spectra.fitting(enx[esel],zoo[esel]) for zoo in mom2all[2:-1]]
    results=np.zeros((len(momall),4))
    results[:,0]=[conv1[0]/(f[0][3]+conv1[1]) for f in allfit]
    results[:,1:]=qcorr
    restemp=np.zeros_like(results)

### Analysis settings
FN = r'D:\measuring\data\20130830\002947_Teleportation_testing_lt1-4_optical_rabi\002947_Teleportation_testing_lt2-9_optical_rabi.hdf5'

r = 1 # after which rep to look



f = h5py.File(FN, 'r')
#channel = f['/HH_channel-1'].value
sync_time = f['/HH_sync_time-1'].value
sync_nr = f['/HH_sync_nr-1'].value
f.close()




hist = np.zeros(max(sync_time))
for i in sync_time[where(sync_nr%1000==r)]:
    hist[i] += 1

fig, ax = subplots(1,1, figsize=((4,4)))

plt.plot(hist)



ax.set_xlabel('sync time')
ax.set_ylabel('counts')
Exemple #6
0
import matplotlib.plot as p
import math

x = [i/500. for i in range(1000)]
f = [math.exp(-x_i) for x_i in x]
r = [x_i * f_i for x_i, f_i in zip(x, f)]
p.plot(x, r)
p.grid()
p.show()
Exemple #7
0
from matplotlib import plot as plt

x = range(2, 26, 2)
y = [1, 2, 3, 4, 5, 6, 7, 8, 20, 12, 12, 11]


plt.plot(x, y)
plt.show()
Exemple #8
0
import matplotlib.plot as p
import math

x = [i / 500. for i in range(1000)]
f = [math.exp(-x_i) for x_i in x]
r = [x_i * f_i for x_i, f_i in zip(x, f)]
p.plot(x, r)
p.grid()
p.show()
#distributution by factors 
g = sns.FacetGrid(df, row= "factor1",col="factor2", margin_titles=True,size=5)
bins = np.linspace(0, 60, 13)
g.map(sns.distplot, "x", color="steelblue", bins=bins)

#group b plots

def fraction_plot(grpvar,ax):
    grp=df[[grpvar,'colsum','x']].groupby(grpvar).sum()
    return grp.div(grp['colsum'],0)['x'].plot(kind='bar',ax=ax)
fig, axes = plt.subplots(nrows=2, ncols=2,figsize=(30, 15))

#plot iwth confidence interval 
plt.gca().invert_xaxis()
plt.plot(nbrs, fmeanstr, color=c0, label="training");
plt.fill_between(nbrs, fmeanstr - fstdsstr, fmeanstr+fstdsstr, color=c0, alpha=0.3)
plt.plot(nbrs, fmeanste, color=c1, label="testing");
plt.fill_between(nbrs, fmeanste - fstdsste, fmeanste+fstdsste, color=c1, alpha=0.5)

plt.legend();


############################### Numpy/Sparse #############################


#add indicator variables based on a categorical column
#determine the unique genres
genres = set()
for genre in largedf.genres:
    genres.update(genre)
import numpy as np
import h5py
from matplotlib import plot as plt

### Analysis settings
FN = r'D:\measuring\data\20130830\002947_Teleportation_testing_lt1-4_optical_rabi\002947_Teleportation_testing_lt2-9_optical_rabi.hdf5'

r = 1  # after which rep to look

f = h5py.File(FN, 'r')
#channel = f['/HH_channel-1'].value
sync_time = f['/HH_sync_time-1'].value
sync_nr = f['/HH_sync_nr-1'].value
f.close()

hist = np.zeros(max(sync_time))
for i in sync_time[where(sync_nr % 1000 == r)]:
    hist[i] += 1

fig, ax = subplots(1, 1, figsize=((4, 4)))

plt.plot(hist)

ax.set_xlabel('sync time')
ax.set_ylabel('counts')
Exemple #11
0
        return data

    def bbands(self):
        c = TechIndicators(key=self.api_key, output_format='pandas')
        data, meta_data = c.get_bbands(symbol=self.stock_name)
        return data

    def sma(self):
        d = TechIndicators(key=self.api_key, output_format='pandas')
        data, meta_data = d.get_sma(symbol=self.stock_name, time_period=30)
        return data

    def close(self):
        d = TimeSeries(key=self.api_key, output_format='pandas')
        data, meta_data = d.get_daily(symbol=self.stock_name,
                                      outputsize='full')
        return data


if __name__ == "__main__":
    TI = TechnicalIndicators("AAPL")
    rsi_data = TI.rsi()
    plt.plot(rsi_data)
    plt.show()

ts = TimeSeries(key=API_KEY, output_format='pandas')
data, meta_data = ts.get_intraday(symbol="MSFT",
                                  interval='1min',
                                  outputsize='full')
data.columns = ["open", "high", "low", "close", "volume"]