Exemple #1
0
    def createCellsFixedNum (self):
        ''' Create population cells based on fixed number of cells'''
        cells = []
        seed(sim.id32('%d'%(sim.cfg.seeds['loc']+self.tags['numCells']+sim.net.lastGid)))
        randLocs = rand(self.tags['numCells'], 3)  # create random x,y,z locations

        if sim.net.params.shape == 'cylinder':
            # Use the x,z random vales 
            rho = randLocs[:,0] # use x rand value as the radius rho in the interval [0, 1)
            phi = 2 * pi * randLocs[:,2] # use z rand value as the angle phi in the interval [0, 2*pi) 
            x = (1 + sqrt(rho) * cos(phi))/2.0
            z = (1 + sqrt(rho) * sin(phi))/2.0
            randLocs[:,0] = x
            randLocs[:,2] = z
    
        elif sim.net.params.shape == 'ellipsoid':
            # Use the x,y,z random vales 
            rho = np.power(randLocs[:,0], 1.0/3.0) # use x rand value as the radius rho in the interval [0, 1); cuberoot
            phi = 2 * pi * randLocs[:,1] # use y rand value as the angle phi in the interval [0, 2*pi) 
            costheta = (2 * randLocs[:,2]) - 1 # use z rand value as cos(theta) in the interval [-1, 1); ensures uniform dist 
            theta = arccos(costheta)  # obtain theta from cos(theta)
            x = (1 + rho * cos(phi) * sin(theta))/2.0
            y = (1 + rho * sin(phi) * sin(theta))/2.0
            z = (1 + rho * cos(theta))/2.0 
            randLocs[:,0] = x
            randLocs[:,1] = y
            randLocs[:,2] = z
        
        for icoord, coord in enumerate(['x', 'y', 'z']):
            if coord+'Range' in self.tags:  # if user provided absolute range, convert to normalized
                self.tags[coord+'normRange'] = [float(point) / getattr(sim.net.params, 'size'+coord.upper()) for point in self.tags[coord+'Range']]
            # constrain to range set by user
            if coord+'normRange' in self.tags:  # if normalized range, rescale random locations
                minv = self.tags[coord+'normRange'][0] 
                maxv = self.tags[coord+'normRange'][1] 
                randLocs[:,icoord] = randLocs[:,icoord] * (maxv-minv) + minv

        for i in self._distributeCells(int(sim.net.params.scale * self.tags['numCells']))[sim.rank]:
            gid = sim.net.lastGid+i
            self.cellGids.append(gid)  # add gid list of cells belonging to this population - not needed?
            cellTags = {k: v for (k, v) in self.tags.iteritems() if k in sim.net.params.popTagsCopiedToCells}  # copy all pop tags to cell tags, except those that are pop-specific
            cellTags['popLabel'] = self.tags['popLabel']
            cellTags['xnorm'] = randLocs[i,0] # set x location (um)
            cellTags['ynorm'] = randLocs[i,1] # set y location (um)
            cellTags['znorm'] = randLocs[i,2] # set z location (um)
            cellTags['x'] = sim.net.params.sizeX * randLocs[i,0] # set x location (um)
            cellTags['y'] = sim.net.params.sizeY * randLocs[i,1] # set y location (um)
            cellTags['z'] = sim.net.params.sizeZ * randLocs[i,2] # set z location (um)
            cells.append(self.cellModelClass(gid, cellTags)) # instantiate Cell object
            if sim.cfg.verbose: print('Cell %d/%d (gid=%d) of pop %s, on node %d, '%(i, sim.net.params.scale * self.tags['numCells']-1, gid, self.tags['popLabel'], sim.rank))
        sim.net.lastGid = sim.net.lastGid + self.tags['numCells'] 
        return cells
Exemple #2
0
    def plotimx(self, im):
        if self.type == "polygon":
            for reg in ("ap", "bg0", "bg1"):
                ci = self.imcoords(im, reg=reg)
                pl.plot(ci[:, 0], ci[:, 1])
        elif self.type == "circle":
            n = 33
            t = pl.arange(n) * pl.pi * 2 / n
            ct = pl.cos(t)
            st = pl.sin(t)
            for reg in ("ap", "bg0", "bg1"):
                ci = self.imcoords(im, reg=reg)
                #print "center of circle= %f %f" % ci[0:2]
                r = ci[2]  # in pix
                pl.plot(ci[0] + r * ct, ci[1] + r * st)

            # point north:  XXX TODO make general
            from astropy import wcs
            w = wcs.WCS(im.header)
            # use origin=0 i.e. NOT FITS convention, but pl.imshow sets origin
            # to 0,0 so do that here so we can overplot on pl.imshow axes
            origin = 0
            c = self.bg1coords  # only works below for circle
            ctr = w.wcs_world2pix([c[0:2]], origin)[0]
            # north
            ctr2 = w.wcs_world2pix([c[0:2] + pl.array([c[2], 0])], origin)[0]
            pl.plot([ctr[0], ctr2[0]], [ctr[1], ctr2[1]])
Exemple #3
0
    def setbgcoords(self):
        if self.type == None:
            raise Exception("region type=None - has it been set?")
        if self.type == "circle":
            if len(self.coords) != 3:
                raise Exception(
                    "region coords should be ctr_ra, ctr_dec, rad_arcsec - the coord array has unexpected length %d"
                    % len(self.coords))
            self.bg0coords = pl.array(self.coords)
            self.bg1coords = pl.array(self.coords)
            # set larger radii for annulus
            self.bg0coords[2] = self.coords[2] * self.bgfact[0]
            self.bg1coords[2] = self.coords[2] * self.bgfact[1]
        elif self.type == "polygon":
            n = self.coords.shape[1]
            self.coords = pl.array(self.coords)
            ctr = [self.coords[:, 0].mean(), self.coords[:, 1].mean()]
            x = self.coords[:, 0] - ctr[0]
            y = self.coords[:, 1] - ctr[1]
            r = pl.sqrt(x**2 + y**2)
            th = pl.arctan2(y, x)

            ct = pl.cos(th)
            st = pl.sin(th)
            # inner and outer background regions
            b = self.bgfact
            self.bg0coords = pl.array([r * b[0] * ct, r * b[0] * st]).T + ctr
            self.bg1coords = pl.array([r * b[1] * ct, r * b[1] * st]).T + ctr

        else:
            raise Exception("unknown region type %s" % self.type)
Exemple #4
0
 def plotradec(self):
     if self.type == "polygon":
         pl.plot(self.coords[:, 0], self.coords[:, 1])
         pl.plot(self.bg0coords[:, 0], self.bg0coords[:, 1])
         pl.plot(self.bg1coords[:, 0], self.bg1coords[:, 1])
     elif self.type == "circle":
         n = 23
         t = pl.arange(n) * pl.pi * 2 / n
         r = self.coords[2]
         ct = pl.cos(t)
         st = pl.sin(t)
         cdec = pl.cos(self.coords[1] * pl.pi / 180)
         pl.plot(self.coords[0] + r * ct / cdec, self.coords[1] + r * st)
         r = self.bg0coords[2]
         pl.plot(self.bg0coords[0] + r * ct / cdec,
                 self.bg0coords[1] + r * st)
         r = self.bg1coords[2]
         pl.plot(self.bg1coords[0] + r * ct / cdec,
                 self.bg1coords[1] + r * st)
Exemple #5
0
 def _make_dct(self):
     """
     ::
         Construct the discrete cosine transform coefficients for the
         current size of constant-Q transform
     """
     DCT_OFFSET = self.lcoef
     nm = 1 / P.sqrt(self._cqtN / 2.0)
     self.DCT = P.empty((self._dctN, self._cqtN))
     for i in P.arange(self._dctN):
         for j in P.arange(self._cqtN):
             self.DCT[i, j] = nm * P.cos(i * (2 * j + 1) *
                                         (P.pi / 2.0) / self._cqtN)
     for j in P.arange(self._cqtN):
         self.DCT[0, j] *= P.sqrt(2.0) / 2.0
Exemple #6
0
def test_interp():
    # Testing interpolation
    nn = 33 # number of nodes
    ne = 65 # number of evaluation points
    x = cos(pi*(1+array(range(nn)))/(nn+1))
    xp = linspace(-1,1,ne)
    rbf_list = ['mq','gauss','phs']   
    ep_list = [3.,5.,7.,9.]
    m = 3
    for ep in ep_list:
        for ff in rbf_list:
            # 1D
            d = array([x]).T
            p = array([xp]).T
            rhs = testfunction(d)
            exact = testfunction(p)
            Pf = rbfinterp(d,rhs,p,ff,shapeparm = ep, power = m)

            err = norm(Pf-exact)
            
            print("1D interp, {}, shape = {}, L2 error = {:e}".format(ff,ep,err))
    
            # 2D
            d = array([x,x]).T
            p = array([xp,xp]).T
            rhs = testfunction(d)
            exact = testfunction(p)
            Pf = rbfinterp(d,rhs,p,ff,shapeparm = ep, power = m)
        
            err = norm(Pf-exact)
            
            print("2D interp, {}, shape = {}, L2 error = {:e}".format(ff,ep,err))
        
            # 3D
            d = array([x,x,x]).T
            p = array([xp,xp,xp]).T
            rhs = testfunction(d)
            exact = testfunction(p)
            Pf = rbfinterp(d,rhs,p,ff,shapeparm = ep, power = m)
        
            err = norm(Pf-exact)
        
            print("3D interp, {}, shape = {}, L2 error = {:e}".format(ff,ep,err))
            print("----------------------------------------------------------")
Exemple #7
0
    def createCellsDensity (self):
        ''' Create population cells based on density'''
        cells = []
        shape = sim.net.params.shape
        sizeX = sim.net.params.sizeX
        sizeY = sim.net.params.sizeY
        sizeZ = sim.net.params.sizeZ
        
        # calculate volume
        if shape == 'cuboid':
            volume = sizeY/1e3 * sizeX/1e3 * sizeZ/1e3  
        elif shape == 'cylinder':
            volume = sizeY/1e3 * sizeX/1e3/2 * sizeZ/1e3/2 * pi
        elif shape == 'ellipsoid':
            volume = sizeY/1e3/2.0 * sizeX/1e3/2.0 * sizeZ/1e3/2.0 * pi * 4.0 / 3.0

        for coord in ['x', 'y', 'z']:
            if coord+'Range' in self.tags:  # if user provided absolute range, convert to normalized
                self.tags[coord+'normRange'] = [point / sim.net.params['size'+coord.upper()] for point in self.tags[coord+'Range']]
            if coord+'normRange' in self.tags:  # if normalized range, rescale volume
                minv = self.tags[coord+'normRange'][0] 
                maxv = self.tags[coord+'normRange'][1] 
                volume = volume * (maxv-minv)

        funcLocs = None  # start with no locations as a function of density function
        if isinstance(self.tags['density'], str): # check if density is given as a function 
            if shape == 'cuboid':  # only available for cuboids
                strFunc = self.tags['density']  # string containing function
                strVars = [var for var in ['xnorm', 'ynorm', 'znorm'] if var in strFunc]  # get list of variables used 
                if not len(strVars) == 1:
                    print 'Error: density function (%s) for population %s does not include "xnorm", "ynorm" or "znorm"'%(strFunc,self.tags['popLabel'])
                    return
                coordFunc = strVars[0] 
                lambdaStr = 'lambda ' + coordFunc +': ' + strFunc # convert to lambda function 
                densityFunc = eval(lambdaStr)
                minRange = self.tags[coordFunc+'Range'][0]
                maxRange = self.tags[coordFunc+'Range'][1]

                interval = 0.001  # interval of location values to evaluate func in order to find the max cell density
                maxDensity = max(map(densityFunc, (arange(minRange, maxRange, interval))))  # max cell density 
                maxCells = volume * maxDensity  # max number of cells based on max value of density func 
                
                seed(sim.id32('%d' % sim.cfg.seeds['loc']+sim.net.lastGid))  # reset random number generator
                locsAll = minRange + ((maxRange-minRange)) * rand(int(maxCells), 1)  # random location values 
                locsProb = array(map(densityFunc, locsAll)) / maxDensity  # calculate normalized density for each location value (used to prune)
                allrands = rand(len(locsProb))  # create an array of random numbers for checking each location pos 
                
                makethiscell = locsProb>allrands  # perform test to see whether or not this cell should be included (pruning based on density func)
                funcLocs = [locsAll[i] for i in range(len(locsAll)) if i in array(makethiscell.nonzero()[0],dtype='int')] # keep only subset of yfuncLocs based on density func
                self.tags['numCells'] = len(funcLocs)  # final number of cells after pruning of location values based on density func
                if sim.cfg.verbose: print 'Volume=%.2f, maxDensity=%.2f, maxCells=%.0f, numCells=%.0f'%(volume, maxDensity, maxCells, self.tags['numCells'])
            else:
                print 'Error: Density functions are only implemented for cuboid shaped networks'
                exit(0)
        else:  # NO ynorm-dep
            self.tags['numCells'] = int(self.tags['density'] * volume)  # = density (cells/mm^3) * volume (mm^3)

        # calculate locations of cells 
        seed(sim.id32('%d'%(sim.cfg.seeds['loc']+self.tags['numCells']+sim.net.lastGid)))
        randLocs = rand(self.tags['numCells'], 3)  # create random x,y,z locations

        if sim.net.params.shape == 'cylinder':
            # Use the x,z random vales 
            rho = randLocs[:,0] # use x rand value as the radius rho in the interval [0, 1)
            phi = 2 * pi * randLocs[:,2] # use z rand value as the angle phi in the interval [0, 2*pi) 
            x = (1 + sqrt(rho) * cos(phi))/2.0
            z = (1 + sqrt(rho) * sin(phi))/2.0
            randLocs[:,0] = x
            randLocs[:,2] = z
    
        elif sim.net.params.shape == 'ellipsoid':
            # Use the x,y,z random vales 
            rho = np.power(randLocs[:,0], 1.0/3.0) # use x rand value as the radius rho in the interval [0, 1); cuberoot
            phi = 2 * pi * randLocs[:,1] # use y rand value as the angle phi in the interval [0, 2*pi) 
            costheta = (2 * randLocs[:,2]) - 1 # use z rand value as cos(theta) in the interval [-1, 1); ensures uniform dist 
            theta = arccos(costheta)  # obtain theta from cos(theta)
            x = (1 + rho * cos(phi) * sin(theta))/2.0
            y = (1 + rho * sin(phi) * sin(theta))/2.0
            z = (1 + rho * cos(theta))/2.0 
            randLocs[:,0] = x
            randLocs[:,1] = y
            randLocs[:,2] = z

        for icoord, coord in enumerate(['x', 'y', 'z']):
            if coord+'normRange' in self.tags:  # if normalized range, rescale random locations
                minv = self.tags[coord+'normRange'][0] 
                maxv = self.tags[coord+'normRange'][1] 
                randLocs[:,icoord] = randLocs[:,icoord] * (maxv-minv) + minv
            if funcLocs and coordFunc == coord+'norm':  # if locations for this coordinate calculated using density function
                randLocs[:,icoord] = funcLocs

        if sim.cfg.verbose and not funcLocs: print 'Volume=%.4f, density=%.2f, numCells=%.0f'%(volume, self.tags['density'], self.tags['numCells'])

        for i in self._distributeCells(self.tags['numCells'])[sim.rank]:
            gid = sim.net.lastGid+i
            self.cellGids.append(gid)  # add gid list of cells belonging to this population - not needed?
            cellTags = {k: v for (k, v) in self.tags.iteritems() if k in sim.net.params.popTagsCopiedToCells}  # copy all pop tags to cell tags, except those that are pop-specific
            cellTags['popLabel'] = self.tags['popLabel']
            cellTags['xnorm'] = randLocs[i,0]  # calculate x location (um)
            cellTags['ynorm'] = randLocs[i,1]  # calculate y location (um)
            cellTags['znorm'] = randLocs[i,2]  # calculate z location (um)
            cellTags['x'] = sizeX * randLocs[i,0]  # calculate x location (um)
            cellTags['y'] = sizeY * randLocs[i,1]  # calculate y location (um)
            cellTags['z'] = sizeZ * randLocs[i,2]  # calculate z location (um)
            cells.append(self.cellModelClass(gid, cellTags)) # instantiate Cell object
            if sim.cfg.verbose: 
                print('Cell %d/%d (gid=%d) of pop %s, pos=(%2.f, %2.f, %2.f), on node %d, '%(i, self.tags['numCells']-1, gid, self.tags['popLabel'],cellTags['x'], cellTags['y'], cellTags['z'], sim.rank))
        sim.net.lastGid = sim.net.lastGid + self.tags['numCells'] 
        return cells
Exemple #8
0
import matplotlib.pylab as pl
import numpy as np

x = np.linspace(-np.pi,np.pi,100)
y = pl.sin(x)
z = pl.cos(x)
pl.plot(x,y,'r+',x,z,'k*') #import plot from pylab as pi and plot.
pl.xlabel('time')
pl.ylabel('value')
pl.title('trogonometric data of $Sine(x)$ and $Cos(x)$')
pl.show() #show the plot

import matplotlib.pylab as p
from mpl_toolkits.mplot3d import Axes3D

print("please be patient.....")
delta = 0.1

x = p.arange(-3., 3., delta)
y = p.arange(-3., 3., delta)
X, Y = p.meshgrid(x, y)
Z = p.sin(X) * p.cos(Y)

fig = p.figure()
ax = Axes3D(fig)
ax.plot_surface(X, Y, Z)
ax.plot_wireframe(X, Y, Z, color='r')
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')

p.show()
""" From "COMPUTATIONAL PHYSICS" & "COMPUTER PROBLEMS in PHYSICS"
    by RH Landau, MJ Paez, and CC Bordeianu (deceased)
    Copyright R Landau, Oregon State Unv, MJ Paez, Univ Antioquia, 
    C Bordeianu, Univ Bucharest, 2018. 
    Please respect copyright & acknowledge our work."""

# Simple3Dplot.py: matplotlib 3D plot, rotate & scale wi mouse

import matplotlib.pylab as p
from mpl_toolkits.mplot3d import Axes3D

print("Please be patient while I do importing & plotting")
delta = 0.1
x = p.arange(-3., 3., delta)
y = p.arange(-3., 3., delta)
X, Y = p.meshgrid(x, y)
Z = p.sin(X) * p.cos(Y)  # Surface height
fig = p.figure()  # Create figure
ax = Axes3D(fig)  # Plots axes
ax.plot_surface(X, Y, Z)  # Surface
ax.plot_wireframe(X, Y, Z, color='r')  # Add wireframe
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
p.show()  # Output figure
Exemple #11
0
from matplotlib import pylab as plt

xaxis = plt.arange(0, plt.pi * 4, 0.1)

plt.figure("sin() and cos() animation")

for i in xaxis:
    series1 = plt.sin(xaxis - i)
    series2 = plt.cos(xaxis - i)
    # plt.subplot(211)
    plt.plot(xaxis, series1, "--", label="sin()")
    # plt.subplot(212)
    plt.plot(xaxis, series2, ":", label="cos()")
    plt.legend()
    plt.draw()  #instead of plt.show()
    plt.pause(0.025)
    plt.clf()
Exemple #12
0
def phot1(r,
          imlist,
          plot=True,
          names=None,
          panel=None,
          debug=None,
          showmask="both"):
    """
    give me a region and an imlist and tell me whether to plot cutouts
    """
    nim = len(imlist)
    # TODO alg for how many subpanels.
    if panel == None: panel = [5, 4, 1]  # for vertical page
    f = []
    df = []
    raw = []
    for j in range(nim):
        im = imlist[j]
        # if plotting, need to make image cutouts; even if not, this tells
        # us if the source is off the edge
        xtents = r.imextents(imlist[j])
        minsize = 5
        if (xtents[3] - xtents[1]) < minsize or (xtents[2] -
                                                 xtents[0]) < minsize:
            raw0, f0, df0 = 0, 0, 0
            print "phot region too small - %f,%f less than %d pixels" % (
                (xtents[3] - xtents[1]), (xtents[2] - xtents[0]), minsize)
            print xtents, r.imcoords(im, reg="bg1")
        else:
            if plot:
                pl.subplot(panel[0], panel[1], panel[2])
                im = hextract(imlist[j], xtents)[0]
                ## ROTATE
                rotate = True
                if rotate:
                    from astropy import wcs
                    w = wcs.WCS(im.header)
                    from scipy.ndimage.interpolation import rotate
                    if w.wcs.has_crota():
                        t0 = w.wcs.crota[1]
                    else:
                        t0 = pl.arctan2(w.wcs.cd[0, 1],
                                        -w.wcs.cd[0, 0]) * 180 / pl.pi
                    theta = -1 * t0
                    im.data = rotate(im.data, theta, reshape=False)
                    ct = pl.cos(pl.pi * theta / 180)
                    st = pl.sin(pl.pi * theta / 180)
                    if w.wcs.has_crota():
                        w.wcs.crota[1] = w.wcs.crota[1] + theta
                        im.header['CROTA2'] = w.wcs.crota[1]
                        print "rotating crota by " + str(theta)
                    else:
                        w.wcs.cd = pl.matrix(w.wcs.cd) * pl.matrix([[ct, -st],
                                                                    [st, ct]])
                        im.header['CD1_1'] = w.wcs.cd[0, 0]
                        im.header['CD1_2'] = w.wcs.cd[0, 1]
                        im.header['CD2_1'] = w.wcs.cd[1, 0]
                        im.header['CD2_2'] = w.wcs.cd[1, 1]
                        print "rotating cd    by " + str(theta)

                    #pdb.set_trace()

                # ugh need minmax of aperture region...
                # estimate as inner 1/2 for now
                s = im.shape
                z = im.data[int(s[0] * 0.25):int(s[0] * 0.75),
                            int(s[1] * 0.25):int(s[1] * 0.75)]
                if len(z[0]) <= 0:
                    print z

                z = pl.where(pl.isnan(im.data))
                if len(z[0]) > 0:
                    z = pl.where(pl.isnan(im.data) == False)
                    std = im.data[z[0], z[1]].std()
                else:
                    std = im.data.std()
                rg = pl.median(im.data) + pl.array([-0.5, 5]) * std
                # marta wants them less saturated
                rg[1] = pl.nanmax(im.data)

                if rg[0] < 0: rg[0] = 0
                if rg[1] <= rg[0]:
                    rg = [pl.nanmin(z), pl.nanmax(z)]
                if showmask == False or showmask == "both":  # show the jet one
                    pl.imshow(im.data,
                              origin="bottom",
                              interpolation="nearest",
                              vmin=rg[0],
                              vmax=rg[1])
                elif showmask == True:  # only show the mask
                    pl.imshow(im.data,
                              origin="bottom",
                              interpolation="nearest",
                              vmin=rg[0],
                              vmax=rg[1],
                              cmap="YlGn")
                ax = pl.gca()
                ax.axes.get_xaxis().set_visible(False)
                ax.axes.get_yaxis().set_visible(False)
                if names:
                    pl.text(0.05,
                            0.99,
                            names[j],
                            horizontalalignment='left',
                            verticalalignment='top',
                            transform=ax.transAxes,
                            bbox=dict(facecolor='white', alpha=0.5))
                pl.xlim([-0.5, s[1] - 0.5])
                pl.ylim([-0.5, s[0] - 0.5])
                if showmask == False:
                    r.plotimx(im)  # overplot the apertures

                if showmask == "both":
                    panel[2] = panel[2] + 1
                    pl.subplot(panel[0], panel[1], panel[2])
                    rg = pl.median(im.data) + pl.array([-0.5, 5]) * std
                    if rg[0] < 0: rg[0] = 0
                    if rg[1] <= rg[0]:
                        rg = [pl.nanmin(z), pl.nanmax(z)]
                    pl.imshow(im.data,
                              origin="bottom",
                              interpolation="nearest",
                              vmin=rg[0],
                              vmax=rg[1],
                              cmap="YlGn")
                    ax = pl.gca()
                    ax.axes.get_xaxis().set_visible(False)
                    ax.axes.get_yaxis().set_visible(False)
                    if names:
                        pl.text(0.05,
                                0.99,
                                names[j],
                                horizontalalignment='left',
                                verticalalignment='top',
                                transform=ax.transAxes,
                                bbox=dict(facecolor='white', alpha=0.5))
                    pl.xlim([-0.5, s[1] - 0.5])
                    pl.ylim([-0.5, s[0] - 0.5])

            if debug:
                #                r.debug=True
                if names:
                    print names[j]

            raw0, bg, f0, df0 = r.phot(im)
        raw.append(raw0)
        f.append(f0)
        df.append(df0)
        panel[2] = panel[2] + 1
    if plot:
        pl.subplots_adjust(wspace=0.02,
                           hspace=0.02,
                           left=0.1,
                           right=0.97,
                           top=0.95,
                           bottom=0.05)
    return f, df, raw
#print(C)

#9 - Add C to B (think of C as noise) and record the result in D
D = B + C[:len(B), ]  # capture 500 elements from C to match to size of B
#print(D)

#SORT IT prior to plotting
#Part	2	-	plotting:
#10 -  Create	a	figure,	give	it	a	title	and	specify	your	own	size	and	dpi
plb.figure('Plotting signals', figsize=(6, 4), dpi=100)

#11 - Plot	the	sin	of	D,	in	the	(2,1,1)	location	of	the	figure
#12 - Overlay	a	plot	of	cos	using	D,	with	different	color,	thickness	and	type	of	line
plb.subplot(2, 1, 1)
d_sin = plb.sin(D)
d_cos = plb.cos(D)
plb.title("Function of Sin and Cos")
plb.plot(D, d_sin, color="b", linewidth=1.5, linestyle="--", label='sin')
plb.plot(D, d_cos, color="r", linewidth=1, linestyle="-.", label='cos')

#13. Create	some	space	on	top	and	bottom	of	the	plot	(on	the	y	axis)	and	show	the	grid
plb.ylim(-1.12, 1.12)
plb.grid()

#14 - Specify	the	following:	title,	Y-axis	label	and	legend	to	fit	in	the	best	way
plb.ylabel('Y-axis')
plb.title('Signals')
plb.legend(loc='best')

#15. Plot	the	tan	of	D,	in	location	(2,1,2)	with	grid	showing,	X-axis	label,	Y-axis	label	and
#legend	on	top	right