Exemple #1
0
    def set_cmap(self, cmap):
        """ Change the colormap of the image """
        if cmap == 'autumn':
            plt.autumn()
        elif cmap == 'spring':
            plt.spring()

        self.canvas.show()
Exemple #2
0
def main():
    observations = [pfd_snr.Observation(pfdfn) for pfdfn in sys.argv[1:]]
    data = np.array([(o.snr, o.ra, o.dec) for o in observations])
    if debug:
        print "data:"
        for z in data:
            print "\tSNR:", z[0], "RA:", z[1], "Dec:", z[2]
    # Init guess is max SNR, weighted avg of RA, weighted avg of Dec
    data_T = data.transpose()
    init_params = (data_T[0].max(), (data_T[0]*data_T[1]).sum()/data_T[0].sum(), \
                        (data_T[0]*data_T[2]).sum()/data_T[0].sum())
    if debug:
        print "initial parameters:"
        print "\tSNR:", init_params[0], "RA:", init_params[1], "Dec:", init_params[2]
    global beam_profile
    # Use gain = 1
    beam_profile = estimate_snr.EstimateFWHMSNR(3.35/2.0, 1420, 100, 2, 1, 24)
    result = fit(init_params, data) 
    if debug:
        print "results:"
        print "\tSNR:", result[0], "RA:", result[1], "Dec:", result[2]
    psrsnr, psrra, psrdec = result
    snrs, ras, decs = data.transpose()
    plt.figure(figsize=(8.5,11))
    plt.subplot(211)
    plt.title("Fitting gridding observations to determine pulsar position")
    plt.scatter((ras-psrra)*60/15.0, (decs-psrdec)*60, c=snrs, marker='o', label='_nolegend_')
    plt.spring()
    cbar = plt.colorbar()
    cbar.set_label(r"$SNR$")
    plt.scatter(np.array([0]), np.array([0]), s=100, c='k', marker=(5,1,0), \
                    label='Best PSR posn')
    if debug:
        plt.scatter(np.array([init_params[1]-psrra])*60/15.0, \
                        np.array([init_params[2]-psrdec])*60, \
                            s=100, c='w', marker=(5,1,0), label='Init PSR posn')
    plt.legend(loc='best')
    plt.xlabel("RA (sec) + %02.0f:%02.0f:%07.4f" % psr_utils.rad_to_hms(psrra/60.0*psr_utils.DEGTORAD))
    plt.ylabel("Dec (arcsec) + %02.0f:%02.0f:%07.4f" % psr_utils.rad_to_dms(psrdec/60.0*psr_utils.DEGTORAD))
   
    obsangseps = np.zeros(len(snrs))
    for ii in range(len(snrs)):
        obsangseps[ii] = angsep_arcmin(psrra, psrdec, ras[ii], decs[ii])
    maxangsep = obsangseps.max()
    angseps = np.linspace(0,maxangsep*1.1, 1000)
    plt.subplot(212)
    plt.plot(angseps, psrsnr*beam_profile.gain_at_angular_offset(angseps), 'k', zorder=-1)
    plt.scatter(obsangseps, snrs, c=snrs, zorder=1)
    plt.xlabel("Angular separation (arcmin)")
    plt.ylabel("SNR")
    plt.savefig('gridding.tmp.ps', papertype='letter', orientation='portrait')
    cid_keypress = plt.gcf().canvas.mpl_connect('key_press_event', \
                                                    keypress)
    plt.show()
Exemple #3
0
def graph_plotting(dates_temperatures, city):
    plt.figure(figsize=(15, 7))

    plt.bar(range(len(dates_temperatures)),
            [value - 273 for value in dates_temperatures.values()],
            align='edge',
            width=0.5,
            color='red')  # Kelvins to Celsius

    plt.xticks(range(len(dates_temperatures)), list(dates_temperatures.keys()))

    plt.title('{} Weather Forecast {} - {}'.format(
        city,
        list(dates_temperatures.keys())[0],
        list(dates_temperatures.keys())[-1]))

    plt.tick_params(axis='x', rotation=70)
    plt.spring()

    plt.show()
Exemple #4
0
def plot4DGraph(clusters):

    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')

    iter = 0
    for cluster in clusters:
        u_val = [obj[0] for obj in clusters[cluster]]
        v_val = [obj[1] for obj in clusters[cluster]]
        w_val = [obj[2] for obj in clusters[cluster]]
        x_val = [obj[3] for obj in clusters[cluster]]

        if iter == 0:
            img1 = ax.scatter(u_val,
                              v_val,
                              w_val,
                              s=75,
                              c=x_val,
                              cmap=plt.winter(),
                              label='cluster1')
            cbar = fig.colorbar(img1, shrink=0.5, aspect=10)
        elif iter == 1:
            img2 = ax.scatter(u_val,
                              v_val,
                              w_val,
                              s=75,
                              c=x_val,
                              cmap=plt.spring(),
                              label='cluster2')
            cbar = fig.colorbar(img2, shrink=0.5, aspect=10)
        else:
            img3 = ax.scatter(u_val,
                              v_val,
                              w_val,
                              s=75,
                              c=x_val,
                              cmap=plt.gray(),
                              label='cluster3')
            cbar = fig.colorbar(img3, shrink=0.5, aspect=10)

        iter += 1
        cbar.ax.get_yaxis().labelpad = 15
        cbar.ax.set_ylabel('petal width in cm')
        cbar.ax.get_xaxis().labelpad = 15
        cbar.ax.set_xlabel('cluster' + str(iter))

    ax.set_xlabel('sepal length in cm', rotation=150)
    ax.set_ylabel('sepal width in cm')
    ax.set_zlabel(r'petal length in cm', rotation=60)

    plt.title("4D representation of clustering solution")
    plt.show()
Exemple #5
0
    t = data[:, 1]
    rvm = RVM()
    rvm.learn(X, t)

    print "a=", rvm.a

    # 描画
    import matplotlib.pyplot as plt
    x = sp.linspace(0, 1, 50)

    # +-標準偏差1つ分の幅の表示
    meshx, meshy = sp.meshgrid(sp.linspace(0, 1, 200), sp.linspace(-1.5, 1.5, 200))
    meshz = [[abs(rvm.mean(meshx[j][i]) - meshy[j][i]) <= sp.sqrt(rvm.variance(meshx[j][i]))
              for i in range(len(meshx[0]))] for j in range(len(meshx))]
    plt.contour(meshx, meshy, meshz, 1)
    plt.spring()

    # 入力
    plt.scatter(X, t, label="input")

    # 関連ベクトルの描画
    plt.scatter(X[rvm.rv_index], t[rvm.rv_index], marker='d', color='r', label="relevance vector")

    # 元の曲線を表示
    y = sp.sin(2*sp.pi*x)
    plt.plot(x, y, label="sin(2pix)")

    # RVMの予測の平均
    y_  = [rvm.mean(xi) for xi in x]
    plt.plot(x, y_, label="RVM regression")
Exemple #6
0
def main():
    observations = [pfd_snr.Observation(pfdfn) for pfdfn in sys.argv[1:]]
    data = np.array([(o.snr, o.ra, o.dec) for o in observations])
    if debug:
        print "data:"
        for z in data:
            print "\tSNR:", z[0], "RA:", z[1], "Dec:", z[2]
    # Init guess is max SNR, weighted avg of RA, weighted avg of Dec
    data_T = data.transpose()
    init_params = (data_T[0].max(), (data_T[0]*data_T[1]).sum()/data_T[0].sum(), \
                        (data_T[0]*data_T[2]).sum()/data_T[0].sum())
    if debug:
        print "initial parameters:"
        print "\tSNR:", init_params[0], "RA:", init_params[
            1], "Dec:", init_params[2]
    global beam_profile
    # Use gain = 1
    beam_profile = estimate_snr.EstimateFWHMSNR(3.35 / 2.0, 1420, 100, 2, 1,
                                                24)
    result = fit(init_params, data)
    if debug:
        print "results:"
        print "\tSNR:", result[0], "RA:", result[1], "Dec:", result[2]
    psrsnr, psrra, psrdec = result
    snrs, ras, decs = data.transpose()
    plt.figure(figsize=(8.5, 11))
    plt.subplot(211)
    plt.title("Fitting gridding observations to determine pulsar position")
    plt.scatter((ras - psrra) * 60 / 15.0, (decs - psrdec) * 60,
                c=snrs,
                marker='o',
                label='_nolegend_')
    plt.spring()
    cbar = plt.colorbar()
    cbar.set_label(r"$SNR$")
    plt.scatter(np.array([0]), np.array([0]), s=100, c='k', marker=(5,1,0), \
                    label='Best PSR posn')
    if debug:
        plt.scatter(np.array([init_params[1]-psrra])*60/15.0, \
                        np.array([init_params[2]-psrdec])*60, \
                            s=100, c='w', marker=(5,1,0), label='Init PSR posn')
    plt.legend(loc='best')
    plt.xlabel("RA (sec) + %02.0f:%02.0f:%07.4f" %
               psr_utils.rad_to_hms(psrra / 60.0 * psr_utils.DEGTORAD))
    plt.ylabel("Dec (arcsec) + %02.0f:%02.0f:%07.4f" %
               psr_utils.rad_to_dms(psrdec / 60.0 * psr_utils.DEGTORAD))

    obsangseps = np.zeros(len(snrs))
    for ii in range(len(snrs)):
        obsangseps[ii] = angsep_arcmin(psrra, psrdec, ras[ii], decs[ii])
    maxangsep = obsangseps.max()
    angseps = np.linspace(0, maxangsep * 1.1, 1000)
    plt.subplot(212)
    plt.plot(angseps,
             psrsnr * beam_profile.gain_at_angular_offset(angseps),
             'k',
             zorder=-1)
    plt.scatter(obsangseps, snrs, c=snrs, zorder=1)
    plt.xlabel("Angular separation (arcmin)")
    plt.ylabel("SNR")
    plt.savefig('gridding.tmp.ps', papertype='letter', orientation='portrait')
    cid_keypress = plt.gcf().canvas.mpl_connect('key_press_event', \
                                                    keypress)
    plt.show()