Exemple #1
0
def plot_scatter_clickable(obj, var, axis_names=None, axis_ranges=None):
    global exit_program
    exit_program = True
    k = obj.shape[1]
    fig, ax = plt.subplots()
    ax.set_title("Pareto front")
    if k == 2:
        ax.plot(obj[:, 0],
                obj[:, 1],
                marker='o',
                picker=True,
                pickradius=5,
                linestyle='None')
        if axis_names is not None and len(axis_names) == 2:
            plt.xlabel(axis_names[0])
            plt.ylabel(axis_names[1])
        fig.canvas.mpl_connect('pick_event',
                               lambda e: onpick(e, var, obj, False))
    elif k == 3:
        ax = fig.add_subplot(projection='3d')
        ax.plot(obj[:, 0],
                obj[:, 1],
                obj[:, 2],
                marker='o',
                picker=True,
                pickradius=5,
                linestyle='None')
        if axis_names is not None and len(axis_names) == 3:
            ax.set_xlabel(axis_names[0])
            ax.set_ylabel(axis_names[1])
            ax.set_zlabel(axis_names[2])
        fig.canvas.mpl_connect('pick_event',
                               lambda e: onpick(e, var, obj, True))
    else:
        raise Exception("Wrong dimension count")
    if axis_ranges is not None and axis_ranges.shape[0] == 2:
        plt.xlim(axis_ranges[0])
        plt.ylim(axis_ranges[1])
        if k == 3:
            plt.zlim(axis_ranges[2])
    plt.show()
Exemple #2
0
    def plot_band2D(self,
                    efermi=None,
                    spin=0,
                    band=None,
                    cmap='jet',
                    save=False,
                    figsize=(8, 6),
                    figname='BAND2D',
                    xlim=None,
                    ylim=None,
                    zlim=None,
                    fontsize=16,
                    dpi=600,
                    format='png'):
        '''Plot band structure
           
            Attribute:
                efermi          : a Fermi level or a list of Fermi levels
                spin            : 0  for spin unpolarized and LSORBIT = .TRUE.
                                  0 or 1 for spin polarized
                label           : label for high symmetric points, e.g. 'G-X-L-W-G'
                                  if hybridXC=True, the lavel should be a list of labels plus their coordinates
                color           : a list of three color codes for band curves, high symmetric kpoint grid, and Fermi level
                                  
                                  
        '''

        band_idx = band
        if band_idx == None:
            idx_vbm = int(self.nelec)
            if self.soc == False:
                idx_vbm = idx_vbm // 2  # Estimation for insulator, generally wrong for metal
            band_idx = [idx_vbm - 1, idx_vbm]
        else:
            assert band_idx[0] <= band_idx[1]  # from band[0] to band[1]
            if band_idx[0] < 1:
                band_idx[
                    0] = 1  # index used in OUTCAR, will be shifted to start at zero
            if band_idx[1] > self.nbands:
                band_idx[
                    1] = self.nbands  # Cannot larger than the number of bands
            band_idx[0] = band_idx[0] - 1
            band_idx[1] = band_idx[1] - 1

        band, proj_kpath, sym_kpoint_coor, klabel = self._generate_band(
            self.vasprun, efermi, spin, klabel=None)

        # Get X, Y
        kpoint = vasp_io.KPOINTS()
        plane, krange, npoint = kpoint.get_spin_kmesh()
        deltax = 2 * krange[0] / (npoint[0] - 1)
        deltay = 2 * krange[1] / (npoint[1] - 1)
        X, Y = np.mgrid[-krange[0]:(krange[0] + deltax * 0.5):deltax,
                        -krange[1]:(krange[1] + deltay * 0.5):deltay]
        Z = band.reshape(npoint[0], npoint[1], self.nbands)

        ##----------------------------------------------------------
        ##Plotting:
        ##----------------------------------------------------------
        fig = plt.figure(figsize=figsize)
        ax = fig.add_subplot(111, projection='3d')

        # Plot bands
        vmin = Z[:, :, band_idx[0]:band_idx[1] + 1].min()
        vmax = Z[:, :, band_idx[0]:band_idx[1] + 1].max()
        for ith in range(band_idx[0], band_idx[1] + 1):
            surf = ax.plot_surface(X,
                                   Y,
                                   Z[:, :, ith],
                                   cmap=cmap,
                                   vmin=vmin,
                                   vmax=vmax,
                                   linewidth=0,
                                   antialiased=False)

        # Graph adjustments
        ax.tick_params(labelsize=fontsize)
        if xlim == None: xlim = [X.min(), X.max()]
        if ylim == None: ylim = [Y.min(), Y.max()]
        if zlim != None: plt.zlim(zlim)
        plt.xlim(xlim)
        plt.ylim(ylim)
        if plane == 'xy':
            x_label = r'$k_x$'
            y_label = r'$k_y$'
        elif plane == 'xz':
            x_label = r'$k_x$'
            y_label = r'$k_z$'
        elif plane == 'yz':
            x_label = r'$k_y$'
            y_label = r'$k_z$'
        ax.set_xlabel(x_label + r' ($\AA^{-1}$)', size=fontsize + 4)
        ax.set_ylabel(y_label + r' ($\AA^{-1}$)', size=fontsize + 4)
        ax.set_zlabel('Energy (eV)', size=fontsize + 4)
        ax.set_xticks([xlim[0], 0, xlim[1]])
        ax.set_yticks([ylim[0], 0, ylim[1]])
        ax.xaxis.labelpad = 15
        ax.yaxis.labelpad = 15
        ax.zaxis.labelpad = 15
        cbar = fig.colorbar(surf, shrink=0.5, aspect=20)
        cbar.ax.tick_params(labelsize=fontsize + 4)
        plt.tight_layout()
        if save == True:
            fig.savefig('Band.' + format, dpi=dpi, format=format)
        else:
            plt.show()
def compare_three_features(feature_names,
                           scaled=False,
                           xlimit=0,
                           ylimit=0,
                           zlimit=0,
                           ts_size=0.3):
    '''
    the features name should be in the following format:
    feature_names=['poi', 'from_this_person_to_poi', 'from_poi_to_this_person', 'salary']
    where the first field 'poi' is used to distinguish pois from non-pois
    and the rest are axes of the 3D plot.

    For example, try this:
    feature_names=['poi', 'from_this_person_to_poi', 'from_poi_to_this_person', 'salary']
    compare_three_features(feature_names)

    It allows scaling each feature (by maximum value) to demonstrate if it would be meaning ful to scale this 
    feature while conbining.
    '''
    short_data = featureFormat(my_dataset, feature_names, sort_keys=True)
    short_labels, short_features = targetFeatureSplit(short_data)

    #simple train-test split:
    #why split? Because I want to understand the trend, not look at all the information
    #then I might mentally overfit
    x_train, x_test, y_train, y_test = train_test_split(short_features,
                                                        short_labels,
                                                        test_size=ts_size,
                                                        random_state=42)

    #find correlaion between these two:
    first = []
    second = []
    third = []
    for item in x_train:
        first.append(item[0])
        second.append(item[1])
        third.append(item[2])

    if scaled:
        first /= max(first)
        second /= max(second)
        third /= max(third)
    #print("first", first)
    #print("second", second)
    r2 = np.corrcoef([first, second, third])  #[0, 1]
    print("correlation coefficient", r2)

    #let's divide up the training sample into the two classes:
    #all pois:
    first_poi = []
    first_non_poi = []
    second_poi = []
    second_non_poi = []
    third_poi = []
    third_non_poi = []
    for i in range(0, len(y_train)):
        if y_train[i] == 1:
            first_poi.append(first[i])
            second_poi.append(second[i])
            third_poi.append(third[i])
        else:
            first_non_poi.append(first[i])
            second_non_poi.append(second[i])
            third_non_poi.append(third[i])

    #plot
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')

    if xlimit != 0:
        plt.xlim(-10, xlimit)
    if ylimit != 0:
        plt.ylim(-10, ylimit)
    if zlimit != 0:
        plt.zlim(-10, zlimit)

    ax.scatter(first_non_poi,
               second_non_poi,
               third_non_poi,
               facecolor="blue",
               s=20,
               edgecolors="blue",
               alpha=0.5)
    ax.scatter(first_poi,
               second_poi,
               third_poi,
               facecolor="none",
               edgecolors="red",
               s=20)
    ax.set_xlabel(feature_names[1])
    ax.set_ylabel(feature_names[2])
    ax.set_zlabel(feature_names[3])
    plt.show()

    return 1
Exemple #4
0
    def plot(self, filename=None, show=True, legend=False, elim=None):
        """Plot the band structure.

        :param filename: Filename of the plot (if it is None, plot will not be saved).
        :param show:     Show the plot in a matplotlib frontend.
        :param legend:   Show a plot legend describing the bands.
        :param elim:     Limits on the "energy" axis.
        """

        import matplotlib.pyplot as plt

        if self.kvectors is None:
            # Zero-dimensional system
            plt.plot(self.energies[0], linewidth=0, marker='+')

        elif self.kvectors.dim == 1:
            for b, energy in enumerate(self.energies.T):
                plt.plot(self.kvectors.pathLength, energy, label=str(b))

            if self.kvectors.specialpoints_idx is not None:
                specialpoints = self.kvectors.pathLength[self.kvectors.specialpoints_idx]
                plt.xticks(specialpoints, self.kvectors.specialpoints_labels)
                plt.xlim(min(specialpoints), max(specialpoints))
                if elim is not None:
                    plt.ylim(elim)

            if legend:
                plt.legend()

        else:
            from mpl_toolkits.mplot3d import Axes3D  # noqa
            from matplotlib import cm
            fig = plt.figure()
            ax = fig.add_subplot(111, projection='3d')

            eMin = np.nanmin(self.energies)
            eMax = np.nanmax(self.energies)

            for band in range(self.energies.shape[-1]):
                energy = self.energies[..., band].copy()
                energy[np.isnan(energy)] = np.nanmin(energy)

                ax.plot_surface(self.kvectors.points_masked[..., 0],
                                self.kvectors.points_masked[..., 1],
                                energy,
                                cstride=1,
                                rstride=1,
                                cmap=cm.cool,
                                vmin=eMin,
                                vmax=eMax,
                                linewidth=0.001,
                                antialiased=True
                                )

                if elim is not None:
                    plt.zlim(elim)

        # === output ===
        if filename is not None:
            plt.savefig(filename.format(**self.params))

        if show:
            plt.show()
Exemple #5
0
def run( step, parset, H ):

    import matplotlib.pyplot as plt
    import numpy as np
    from h5parm import solFetcher

    solsets = getParSolsets( step, parset, H )
    soltabs = getParSoltabs( step, parset, H )
    ants = getParAxis( step, parset, H, 'ant' )
    pols = getParAxis( step, parset, H, 'pol' )
    dirs = getParAxis( step, parset, H, 'dir' )

    plotType = parset.getString('.'.join(["LoSoTo.Steps", step, "PlotType"]), '' )
    axesToPlot = parset.getStringVector('.'.join(["LoSoTo.Steps", step, "Axes"]), '' )
    minZ, maxZ = parset.getDoubleVector('.'.join(["LoSoTo.Steps", step, "MinMax"]), [0,0] )
    prefix = parset.getString('.'.join(["LoSoTo.Steps", step, "Prefix"]), '' )

    if plotType.lower() in ['1d', '2d']:
        for soltab in openSoltabs( H, soltabs ):

            sf = solFetcher(soltab)
            logging.info("Plotting soltab: "+soltab._v_name)

            sf.setSelection(ant=ants, pol=pols, dir=dirs)

            # some checks
            for axis in axesToPlot:
                if axis not in sf.getAxesNames():
                    logging.error('Axis \"'+axis+'\" not found.')
                    return 1

            if (len(axesToPlot) != 2 and plotType == '2D') or \
               (len(axesToPlot) != 1 and plotType == '1D'):
                logging.error('Wrong number of axes.')
                return 1

            for vals, coord in sf.getValuesIter(returnAxes=axesToPlot):
                # TODO: implement flag control, using different color?

                title = ''
                for axis in coord:
                    if axis in axesToPlot: continue
                    title += str(coord[axis])+'_'
                title = title[:-1]

                if plotType == '2D':
                    fig = plt.figure()
                    ax = plt.subplot(111)
                    plt.title(title)
                    plt.ylabel(axesToPlot[0])
                    plt.xlabel(axesToPlot[1])
                    p = ax.imshow(coord[axesToPlot[1]], coord[axesToPlot[0]], vals)
                    if not (minZ == 0 and maxZ == 0):
                        plt.zlim(zmin=minZ, zmax=maxZ)
                    plt.savefig(title+'.png')
                    logging.info("Saving "+prefix+title+'.png')

                if plotType == '1D':
                    fig = plt.figure()
                    ax = plt.subplot(111)
                    plt.title(title)
                    plt.ylabel(sf.getType())
                    if not (minZ == 0 and maxZ == 0):
                        plt.ylim(ymin=minZ, ymax=maxZ)
                    plt.xlabel(axesToPlot[0])
                    p = ax.plot(coord[axesToPlot[0]], vals)
                    plt.savefig(prefix+title+'.png')
                    logging.info("Saving "+prefix+title+'.png')

    elif plotType.lower() == 'tecscreen':
        # Plot various TEC-screen properties

        for st_scr in openSoltabs(H, soltabs):

            # Check if soltab is a tecscreen table
            full_name = st_scr._v_parent._v_name + '/' + st_scr._v_name
            if st_scr._v_title != 'tecscreen':
                logging.warning('Solution table {0} is not a tecscreen solution '
                    'table. Skipping.'.format(full_name))
                continue
            logging.info('Using input solution table: {0}'.format(full_name))

            # Plot TEC screens as images
            solset = st_scr._v_parent
            sf_scr = solFetcher(st_scr)
            r, axis_vals = sf_scr.getValues()
            source_names = axis_vals['dir']
            station_names = axis_vals['ant']
            station_dict = H.getAnt(solset)
            station_positions = []
            for station in station_names:
                station_positions.append(station_dict[station])
            times = axis_vals['time']

            tec_screen, axis_vals = sf_scr.getValues()
            times = axis_vals['time']
            residuals = sf_scr.getValues(weight=True, retAxesVals=False)
            height = st_scr._v_attrs['height']
            order = st_scr._v_attrs['order']
            beta_val = st_scr._v_attrs['beta']
            r_0 = st_scr._v_attrs['r_0']
            pp = sf_scr.t.piercepoint

            if (minZ == 0 and maxZ == 0):
                min_tec = None
                max_tec = None
            else:
                min_tec = minZ
                max_tec = maxZ

            make_tec_screen_plots(pp, tec_screen, residuals,
                np.array(station_positions), np.array(source_names), times,
                height, order, beta_val, r_0, prefix=prefix,
                remove_gradient=True, show_source_names=False, min_tec=min_tec,
                max_tec=max_tec)

    return 0
Exemple #6
0
    def plot(self, filename=None, show=True, legend=False, elim=None):
        """Plot the band structure.

        :param filename: Filename of the plot (if it is None, plot will not be saved).
        :param show:     Show the plot in a matplotlib frontend.
        :param legend:   Show a plot legend describing the bands.
        :param elim:     Limits on the "energy" axis.
        """

        import matplotlib.pyplot as plt

        if self.kvectors is None:
            # Zero-dimensional system
            plt.plot(self.energies[0], linewidth=0, marker='+')

        elif self.kvectors.dim == 1:
            for b, energy in enumerate(self.energies.T):
                plt.plot(self.kvectors.pathLength, energy, label=str(b))

            if self.kvectors.specialpoints_idx is not None:
                specialpoints = self.kvectors.pathLength[
                    self.kvectors.specialpoints_idx]
                plt.xticks(specialpoints, self.kvectors.specialpoints_labels)
                plt.xlim(min(specialpoints), max(specialpoints))
                if elim is not None:
                    plt.ylim(elim)

            if legend:
                plt.legend()

        else:
            from mpl_toolkits.mplot3d import Axes3D  # noqa
            from matplotlib import cm
            fig = plt.figure()
            ax = fig.add_subplot(111, projection='3d')

            eMin = np.nanmin(self.energies)
            eMax = np.nanmax(self.energies)

            for band in range(self.energies.shape[-1]):
                energy = self.energies[..., band].copy()
                energy[np.isnan(energy)] = np.nanmin(energy)

                ax.plot_surface(self.kvectors.points_masked[..., 0],
                                self.kvectors.points_masked[..., 1],
                                energy,
                                cstride=1,
                                rstride=1,
                                cmap=cm.cool,
                                vmin=eMin,
                                vmax=eMax,
                                linewidth=0.001,
                                antialiased=True)

                if elim is not None:
                    plt.zlim(elim)

        # === output ===
        if filename is not None:
            plt.savefig(filename.format(**self.params))

        if show:
            plt.show()
Exemple #7
0
            obsPx.append(x)
            obsPy.append(y)
            obsPz.append(z)
        
    if iteration < 0:
        targetX.append(x)
        targetY.append(y)
        targetZ.append(z)
        if status > 0:
            partTX.append(x)
            partTY.append(y)
            partTZ.append(z)
        else:
            obsTx.append(x)
            obsTy.append(y)
            obsTz.append(z)


fig = plt.figure(projection='3d')
fig.set_size_inches(14, 14)

plt.scatter(obsPx, obsPy, obsPz, s=60, c='w', marker='o')
plt.scatter(partPX, partPY, partPZ, s=60, c='r', marker='o')
plt.scatter(obsTx, obsTy, obsTz, s=60, c='w', marker='o')
plt.scatter(partTX, partTY, partTZ, s=60, c='g', marker='o')

plt.xlim(-12, 12)
plt.ylim(-12, 12)
plt.zlim(-10, 10)
plt.show()
Exemple #8
0
def run(step, parset, H):

    import matplotlib.pyplot as plt
    import numpy as np
    from h5parm import solFetcher

    solsets = getParSolsets(step, parset, H)
    soltabs = getParSoltabs(step, parset, H)
    ants = getParAxis(step, parset, H, 'ant')
    pols = getParAxis(step, parset, H, 'pol')
    dirs = getParAxis(step, parset, H, 'dir')

    plotType = parset.getString('.'.join(["LoSoTo.Steps", step, "PlotType"]),
                                '')
    axesToPlot = parset.getStringVector(
        '.'.join(["LoSoTo.Steps", step, "Axes"]), '')
    minZ, maxZ = parset.getDoubleVector(
        '.'.join(["LoSoTo.Steps", step, "MinMax"]), [0, 0])
    prefix = parset.getString('.'.join(["LoSoTo.Steps", step, "Prefix"]), '')

    if plotType.lower() in ['1d', '2d']:
        for soltab in openSoltabs(H, soltabs):

            sf = solFetcher(soltab)
            logging.info("Plotting soltab: " + soltab._v_name)

            sf.setSelection(ant=ants, pol=pols, dir=dirs)

            # some checks
            for axis in axesToPlot:
                if axis not in sf.getAxesNames():
                    logging.error('Axis \"' + axis + '\" not found.')
                    return 1

            if (len(axesToPlot) != 2 and plotType == '2D') or \
               (len(axesToPlot) != 1 and plotType == '1D'):
                logging.error('Wrong number of axes.')
                return 1

            for vals, coord in sf.getValuesIter(returnAxes=axesToPlot):
                # TODO: implement flag control, using different color?

                title = ''
                for axis in coord:
                    if axis in axesToPlot: continue
                    title += str(coord[axis]) + '_'
                title = title[:-1]

                if plotType == '2D':
                    fig = plt.figure()
                    ax = plt.subplot(111)
                    plt.title(title)
                    plt.ylabel(axesToPlot[0])
                    plt.xlabel(axesToPlot[1])
                    p = ax.imshow(coord[axesToPlot[1]], coord[axesToPlot[0]],
                                  vals)
                    if not (minZ == 0 and maxZ == 0):
                        plt.zlim(zmin=minZ, zmax=maxZ)
                    plt.savefig(title + '.png')
                    logging.info("Saving " + prefix + title + '.png')

                if plotType == '1D':
                    fig = plt.figure()
                    ax = plt.subplot(111)
                    plt.title(title)
                    plt.ylabel(sf.getType())
                    if not (minZ == 0 and maxZ == 0):
                        plt.ylim(ymin=minZ, ymax=maxZ)
                    plt.xlabel(axesToPlot[0])
                    p = ax.plot(coord[axesToPlot[0]], vals)
                    plt.savefig(prefix + title + '.png')
                    logging.info("Saving " + prefix + title + '.png')

    elif plotType.lower() == 'tecscreen':
        # Plot various TEC-screen properties

        for st_scr in openSoltabs(H, soltabs):

            # Check if soltab is a tecscreen table
            full_name = st_scr._v_parent._v_name + '/' + st_scr._v_name
            if st_scr._v_title != 'tecscreen':
                logging.warning(
                    'Solution table {0} is not a tecscreen solution '
                    'table. Skipping.'.format(full_name))
                continue
            logging.info('Using input solution table: {0}'.format(full_name))

            # Plot TEC screens as images
            solset = st_scr._v_parent
            sf_scr = solFetcher(st_scr)
            r, axis_vals = sf_scr.getValues()
            source_names = axis_vals['dir']
            station_names = axis_vals['ant']
            station_dict = H.getAnt(solset)
            station_positions = []
            for station in station_names:
                station_positions.append(station_dict[station])
            times = axis_vals['time']

            tec_screen, axis_vals = sf_scr.getValues()
            times = axis_vals['time']
            residuals = sf_scr.getValues(weight=True, retAxesVals=False)
            height = st_scr._v_attrs['height']
            order = st_scr._v_attrs['order']
            beta_val = st_scr._v_attrs['beta']
            r_0 = st_scr._v_attrs['r_0']
            pp = sf_scr.t.piercepoint

            if (minZ == 0 and maxZ == 0):
                min_tec = None
                max_tec = None
            else:
                min_tec = minZ
                max_tec = maxZ

            make_tec_screen_plots(pp,
                                  tec_screen,
                                  residuals,
                                  np.array(station_positions),
                                  np.array(source_names),
                                  times,
                                  height,
                                  order,
                                  beta_val,
                                  r_0,
                                  prefix=prefix,
                                  remove_gradient=True,
                                  show_source_names=False,
                                  min_tec=min_tec,
                                  max_tec=max_tec)

    return 0
Exemple #9
0
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sun Apr 16 13:45:33 2017

@author: punit
"""

from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np
k = np.loadtxt('H2D.txt')

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

x = k[:, 0]
y = k[:, 1]
z = k[:, 2]
z2 = k[:, 3]
ax.plot(x, y, z, color='r')
ax.plot(x, y, z2, color='g')
plt.zlim(-5, 5)
plt.show()
Exemple #10
0
def run( step, parset, H ):

    import matplotlib.pyplot as plt
    import numpy as np
    from h5parm import solFetcher

    solsets = getParSolsets( step, parset, H )
    soltabs = getParSoltabs( step, parset, H )
    ants = getParAxis( step, parset, H, 'ant' )
    pols = getParAxis( step, parset, H, 'pol' )
    dirs = getParAxis( step, parset, H, 'dir' )

    plotType = parset.getString('.'.join(["LoSoTo.Steps", step, "PlotType"]), '' )
    axesToPlot = parset.getStringVector('.'.join(["LoSoTo.Steps", step, "Axes"]), '' )
    minZ, maxZ = parset.getDoubleVector('.'.join(["LoSoTo.Steps", step, "MinMax"]), [0,0] )
    prefix = parset.getString('.'.join(["LoSoTo.Steps", step, "Prefix"]), '' )

    if plotType.lower() != 'tecscreen':
        for soltab in openSoltabs( H, soltabs ):

            sf = solFetcher(soltab)
            logging.info("Plotting soltab: "+soltab._v_name)

            sf.setSelection(ant=ants, pol=pols, dir=dirs)

            # some checks
            for axis in axesToPlot:
                if axis not in sf.getAxesNames():
                    logging.error('Axis \"'+axis+'\" not found.')
                    return 1

            if (len(axesToPlot) != 2 and plotType == '2D') or \
               (len(axesToPlot) != 1 and plotType == '1D'):
                logging.error('Wrong number of axes.')
                return 1

            for vals, coord in sf.getValuesIter(returnAxes=axesToPlot):
                # TODO: implement flag control, using different color?

                title = ''
                for axis in coord:
                    if axis in axesToPlot: continue
                    title += str(coord[axis])+'_'
                title = title[:-1]

                if plotType == '2D':
                    fig = plt.figure()
                    ax = plt.subplot(111)
                    plt.title(title)
                    plt.ylabel(axesToPlot[0])
                    plt.xlabel(axesToPlot[1])
                    p = ax.imshow(coord[axesToPlot[1]], coord[axesToPlot[0]], vals)
                    if not (minZ == 0 and maxZ == 0):
                        plt.zlim(zmin=minZ, zmax=maxZ)
                    plt.savefig(title+'.png')
                    logging.info("Saving "+prefix+title+'.png')

                if plotType == '1D':
                    fig = plt.figure()
                    ax = plt.subplot(111)
                    plt.title(title)
                    plt.ylabel(sf.getType())
                    if not (minZ == 0 and maxZ == 0):
                        plt.ylim(ymin=minZ, ymax=maxZ)
                    plt.xlabel(axesToPlot[0])
                    p = ax.plot(coord[axesToPlot[0]], vals)
                    plt.savefig(prefix+title+'.png')
                    logging.info("Saving "+prefix+title+'.png')
    else:
        # Plot TEC screens
        i = 0
        st_tec = None
        st_pp = None
        st_tfw = None

        # Find required soltabs
        for st in openSoltabs(H, soltabs):
            if st._v_title == 'tec':
                st_tec = st
                tec_indx = i
            elif st._v_title == 'tecfitwhite':
                st_tfw = st
            elif st._v_title == 'piercepoint':
                st_pp = st
            i += 1

        if st_tec is None or st_pp is None or st_tfw is None:
            logging.warning('One or more of the required TEC solution tables '
                'not found')
            return 1

        solset = soltabs[tec_indx].split('/')[0]
        station_dict = H.getAnt(solset)
        station_names = station_dict.keys()
        station_positions = station_dict.values()
        source_dict = H.getSou(solset)
        source_names = source_dict.keys()
        source_positions = source_dict.values()

        sf_tec = solFetcher(st_tec)
        r, axis_vals = sf_tec.getValues()
        times = axis_vals['time']
        N_sources = len(source_names)
        N_times = len(times)
        N_stations = len(station_names)
        N_piercepoints = N_sources * N_stations
        rr = np.reshape(r.transpose([0, 2, 1]), [ N_piercepoints, N_times])

        sf_pp = solFetcher(st_pp)
        pp = sf_pp.getValues(retAxesVals=False)
        height = st_tfw._v_attrs['height']
        order = st_tfw._v_attrs['order']
        beta_val = st_tfw._v_attrs['beta']
        r_0 = st_tfw._v_attrs['r_0']

        sf_tfw = solFetcher(st_tfw)
        tec_fit_white = sf_tfw.getValues(retAxesVals=False)
        tec_fit = sf_tfw.getValues(weight=True, retAxesVals=False)

        make_tec_screen_plots(pp, rr, tec_fit_white, tec_fit,
            np.array(station_positions), np.array(source_names), times,
            height, order, beta_val, r_0, prefix=prefix, remove_gradient=True)

    return 0