def getPredictedPriceNormalized(self): # get model first self.getModelFromFilePath(self, self.file) input_features = self.df.iloc[:, [2, 3]].values input_data = input_features predicted_value = self.model.predict(self.X_test) plt.figure(figsize=(100, 40)) plt.plot(predicted_value, color='red') plt.plot(input_data[self.lookback:self.test_size + (2 * self.lookback), 1], color='green') plt.title("Opening price of stocks sold") plt.xlabel("Time (latest-> oldest)") plt.ylabel("Stock Opening Price") plt.show() self.sc.inverse_transform(input_features[self.lookback:self.test_size + (2 * self.lookback)]) return predicted_value
import csv open_file = open("sitka_weather_07-2018_simple.csv", "r") csv_file = csv.reader(open_file, delimiter=",") header_row = next(csv_file) ''' print(header_row) for index, column_header in enumerate(header_row): print(index,column_header) ''' highs = [] for row in csv_file: highs.append(int(row[5])) print(highs) import matplotlib.pyploy as plt plt.plot(highs, c="red") plt.title("Daily High Temp, July 2018", fontsize=16) plt.xlabel("") plt.ylabel("Temperature (F)", fontsize=16) plt.tick_params(axis="both", which="major", labelsize=16) plt.show()
ret, thresh1 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY) ret, thresh2 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY_INV) ret, thresh3 = cv2.threshold(img, 127, 255, cv2.THRESH_TRUNC) ret, thresh4 = cv2.threshold(img, 127, 255, cv2.THRESH_TOZERO) rec, thresh5 = cv2.threshold(img, 127, 255, cv2.THRESH_TOZERO_INV) titles = [ 'original image', 'binary', 'binary_inv', 'trunc', 'tozero', 'tozero_inv' ] images = [img, thresh1, thresh2, thresh3, thresh4, thresh5] for i in xrange(6): plt.subplot(2, 3, i + 1), plt.imshow(image[i], 'gray') plt.title(titles[i]) plt.xticks([]), plt.yticks([]) plt.show() #adaptive thresh img = cv2.imread('dave.jpg', 0) img = cv2.medianBlur(img, 5) ret, th1 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY) th2 = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2) th3 = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2)
low = int(row[5]) current_date= datetime.strptime(row[2],'%Y-%m-%d') except ValueError: print(f"Missing data for {current_date}") else: lows.append(int(row[5])) highs.append(int(row[4])) dates.append(current_date) import matplotlib.pyploy as plt fig= plt.figure() plt.plot(dates, highs, c="red",alpha=0.5) plt.plot(dates, lows, c="blue", aplha=0.5) plt.title("Daily high and low temperatures- 2018\nDeath Valley", fontsize=16) plt.xlabel("", fontsize=12) plt.fill_between(dates, highs, lows, facecolor= 'blue', alpha=0.1) fig.autofmt_xdate() plt.ylabel("Temperature (F)", fontsize=16) plt.tick_params(axis="both", labelsize=16) plt.show()
import csv import matplotlib.pyploy as plt games = [] record = [] wins = 0 f = open('cardinals34.csv') for row in csv.reader(f): if not row[0].isdigit(): continue if row[6].startswith('W') and row[13] == "Dean": wins += 1 games.append(int(row[0])) record.append(wins) plt.title('Dean Brothers progress toward 49 wins') plt.xlabel('Game number') plt.ylabel('Win count') plt.plot(games, record, 'r+') plt.savefig(games.pdf)
print("eigenvectors: \n", eigen_vectors) for val in eigen_values: print(val) variance_explain = [(i/sum(eigen_values))*100 for i in eigen_values] cumulative_var = np.cumsum(variance_explained) cumulative_var sns.lineplot(x = [1,2,3,4] plt.xlabel("number of components") plt.ylabel("cumulative variance") plt.title("explain variance ratio") plt.show() #select eigenvectors and compute PCA eigen_vectors projection_matrix = (eigen_vectors.T[:][:])[:2].T print ("projection_matrix :\n", projection_matrix) X_pca = X.dot(projection_matrix) for species in ('Iris-setosa','Iris-versicolor', 'Iris-virginica'): sns.scatterplot(X_pca[y=species,0], X_pca[y])