def plotting(parsed_data): # figure plot fig, ax = plt.subplots() font = {'family' : 'Times New Roman', 'weight' : 'normal', 'size' : 20} matplotlib.rc('font', **font) fig = matplotlib.pyplot.gcf() fig.gca().grid(True) fig.set_size_inches(10,5) # figure size linewidth = 1 # line width plt.xlabel('(ms)') plt.ylabel('CDF') plt.title('Offload Latency Comparision') plt.xlim([0, 250]) # x-axis range for (label, line_style, x_list, y_list) in parsed_data: # if line_style.endswith("--"): # plt.plot(x_list, y_list, line_style, label=label, linewidth=linewidth, dashes=(20,5)) # else: # if line_style.endswith("-."): # plt.plot(x_list, y_list, line_style, label=label, linewidth=linewidth, dashes=(10,3,3,3)) # else: plt.plot(x_list, y_list, '-', color=line_style, label=label, linewidth=linewidth) plt.legend(loc='lower right', prop={'size':13}) # legend style plt.savefig('img/CDF.png', bbox_inches='tight')
def show_cmaps(names): matplotlib.rc('text', usetex=False) a=np.outer(np.arange(0,1,0.01),np.ones(10)) # pseudo image data f=figure(figsize=(10,5)) f.subplots_adjust(top=0.8,bottom=0.05,left=0.01,right=0.99) # get list of all colormap names # this only obtains names of built-in colormaps: maps=[m for m in cm.datad if not m.endswith("_r")] # use undocumented cmap_d dictionary instead maps = [m for m in cm.cmap_d if not m.endswith("_r")] maps.sort() # determine number of subplots to make l=len(maps)+1 if names is not None: l=len(names) # assume all names are correct! # loop over maps and plot the selected ones i=0 for m in maps: if names is None or m in names: i+=1 ax = subplot(1,l,i) ax.axis("off") imshow(a,aspect='auto',cmap=cm.get_cmap(m),origin="lower") title(m,rotation=90,fontsize=10,verticalalignment='bottom') # savefig("colormaps.png",dpi=100,facecolor='gray') show()
def main(): parser = argparse.ArgumentParser(description="""Compute subset of users who rated at least 10 movies and plot fraction of users satisfied as a function of inventory size.""") parser.add_argument("infilename", help="Read from this file.", type=open) args = parser.parse_args() ratings = read_inputs(args.infilename) ratings = ratings.drop("timestamp", axis=1) movie_rankings = find_movie_rankings(ratings) ratings = ratings.drop("rating", axis=1) user_rankings = find_user_rankings(ratings, movie_rankings) num_users = user_rankings.user_id.unique().size num_movies = movie_rankings.shape[0] user_rankings = clean_rankings(user_rankings) us_levels_100 = find_satisfaction(user_rankings, num_users, num_movies) us_levels_90 = find_satisfaction(user_rankings, num_users, num_movies, satisfaction_level=0.9) rc('text', usetex=True) plt.title('Percent of Users Satisfied vs Inventory Size in the MovieLens Dataset') plt.xlabel('Inventory Size') plt.ylabel('Percent of Users Satisfied') plt.plot(us_levels_100, 'b', label=r'$100\% \ satisfaction$') plt.plot(us_levels_90, 'r--', label=r'$90\% \ satisfaction$') plt.legend() d = datetime.datetime.now().isoformat() plt.savefig('user_satisfaction_%s.png' % d)
def plot_Q_by_year(log=False,show=False,save=False,filename=''): mpl.rc('lines',markersize=6) fig, (Q2012,Q2013,Q2014,Q2015)=plt.subplots(4) letter_subplots(fig,0.1,0.95,'top','right','k',font_size=10,font_weight='bold') for ax in fig.axes: ax.plot_date(LBJ['Q'].index,LBJ['Q'],ls='-',marker='None',c='k',label='Q FG3') #ax.plot(LBJstageDischarge.index,LBJstageDischarge['Q-AV(L/sec)'],ls='None',marker='o',color='k') ax.set_ylim(0,LBJ['Q'].max()+500) Q2014.axvline(study_start), Q2015.axvline(study_end) Q2012.set_xlim(start2012,stop2012),Q2013.set_xlim(start2013,stop2013) Q2014.set_xlim(start2014,stop2014),Q2015.set_xlim(start2015,stop2015) Q2012.legend(loc='best') Q2013.set_ylabel('Discharge (Q) L/sec') #Q2012.set_title("Discharge (Q) L/sec at the Upstream and Downstream Sites, Faga'alu") for ax in fig.axes: ax.locator_params(nbins=6,axis='y') ax.xaxis.set_major_locator(mpl.dates.MonthLocator(interval=2)) ax.xaxis.set_major_formatter(mpl.dates.DateFormatter('%b %Y')) plt.tight_layout(pad=0.1) logaxes(log,fig) show_plot(show,fig) savefig(save,filename) return
def plot_monthly_average_consumption(mpc, country_list, ylabel='normalized', title='', kind='bar', linestyle='-', color='mbygcr', marker='o', linewidth=4.0, fontsize=16, legend=True): """ This function plots the yearly data from a monthlypowerconsumptions object @param df: monthlypowerconsumptions object @param country_list: country names to add on the title of the plot @param ylabel: label for y axis @param title: graphic title @param kind: graphic type ex: bar or line @param linestyle: lines style @param color: color to use @param marker: shape of point on a line @param linewidth: line width @param fontsize: font size @return: n/a """ # Plotting font = {'family' : 'normal', 'weight' : 'bold', 'size' : 12} matplotlib.rc('font', **font) df = mpc.data_normalization(year=False) df = df.groupby('country').mean() del df['year'] del df['Sum'] df = df.T plot_several_countries(df[country_list], ylabel, title, kind=kind, linestyle=linestyle, color=color, marker=marker, linewidth=linewidth, fontsize=fontsize, legend=legend)
def plot_color_gradients(gradients, names): # For pretty latex fonts (commented out, because it does not work on some machines) #rc('text', usetex=True) #rc('font', family='serif', serif=['Times'], size=10) rc('legend', fontsize=10) column_width_pt = 400 # Show in latex using \the\linewidth pt_per_inch = 72 size = column_width_pt / pt_per_inch fig, axes = plt.subplots(nrows=len(gradients), sharex=True, figsize=(size, 0.75 * size)) fig.subplots_adjust(top=1.00, bottom=0.05, left=0.25, right=0.95) for ax, gradient, name in zip(axes, gradients, names): # Create image with two lines and draw gradient on it img = np.zeros((2, 1024, 3)) for i, v in enumerate(np.linspace(0, 1, 1024)): img[:, i] = gradient(v) #wywołujemy sobie każdą funkcje z v im = ax.imshow(img, aspect='auto') im.set_extent([0, 1, 0, 1]) ax.yaxis.set_visible(False) pos = list(ax.get_position().bounds) x_text = pos[0] - 0.25 y_text = pos[1] + pos[3]/2. fig.text(x_text, y_text, name, va='center', ha='left', fontsize=10) fig.savefig('my-gradients.pdf')
def test_rcparams(): mpl.rc('text', usetex=False) mpl.rc('lines', linewidth=22) usetex = mpl.rcParams['text.usetex'] linewidth = mpl.rcParams['lines.linewidth'] fname = os.path.join(os.path.dirname(__file__), 'test_rcparams.rc') # test context given dictionary with mpl.rc_context(rc={'text.usetex': not usetex}): assert mpl.rcParams['text.usetex'] == (not usetex) assert mpl.rcParams['text.usetex'] == usetex # test context given filename (mpl.rc sets linewidth to 33) with mpl.rc_context(fname=fname): assert mpl.rcParams['lines.linewidth'] == 33 assert mpl.rcParams['lines.linewidth'] == linewidth # test context given filename and dictionary with mpl.rc_context(fname=fname, rc={'lines.linewidth': 44}): assert mpl.rcParams['lines.linewidth'] == 44 assert mpl.rcParams['lines.linewidth'] == linewidth # test rc_file mpl.rc_file(fname) assert mpl.rcParams['lines.linewidth'] == 33
def show_cccmacms(): # plot the colormaps as the demo example # http://wiki.scipy.org/Cookbook/Matplotlib/Show_colormaps register_cccmacms() names = list_cccmacms() # COPIED BELOW CODE # base code from http://www.scipy.org/Cookbook/Matplotlib/Show_colormaps matplotlib.rc("text", usetex=False) a = np.outer(np.arange(0, 1, 0.01), np.ones(10)) # pseudo image data f = plt.figure(figsize=(7, 9)) f.subplots_adjust(top=0.8, bottom=0.05, left=0.01, right=0.99) # get list of all colormap names # this only obtains names of built-in colormaps: maps = [m for m in cm.datad if not m.endswith("_r")] # use undocumented cmap_d dictionary instead maps = [m for m in cm.cmap_d if not m.endswith("_r")] maps.sort() # determine number of subplots to make l = len(maps) + 1 if names is not None: l = len(names) # assume all names are correct! # loop over maps and plot the selected ones i = 0 for m in maps: if names is None or m in names: i += 1 ax = plt.subplot(1, l, i) ax.axis("off") plt.imshow(a, aspect="auto", cmap=cm.get_cmap(m), origin="lower") plt.title(m, rotation=90, fontsize=10, verticalalignment="bottom")
def __init__(self, parent, messenger=None, size=(6.00,3.70), dpi=96, **kwds): self.is_macosx = False if os.name == 'posix': if os.uname()[0] == 'Darwin': self.is_macosx = True matplotlib.rc('axes', axisbelow=True) matplotlib.rc('lines', linewidth=2) matplotlib.rc('xtick', labelsize=11, color='k') matplotlib.rc('ytick', labelsize=11, color='k') matplotlib.rc('grid', linewidth=0.5, linestyle='-') self.messenger = messenger if (messenger is None): self.messenger = self.__def_messenger self.conf = ImageConfig() self.cursor_mode='cursor' self.launch_dir = os.getcwd() self.mouse_uptime= time.time() self.last_event_button = None self.view_lim = (None,None,None,None) self.zoom_lims = [self.view_lim] self.old_zoomdc= (None,(0,0),(0,0)) self.parent = parent self._yfmt = '%.4f' self._xfmt = '%.4f' self.figsize = size self.dpi = dpi self.__BuildPanel(**kwds)
def SimpleAlphaVSTime(self): ''' Step through every pair of points in a lightcurve to calculate a very rough measurement of alpha based on the slope of those two points. ''' # set font rc('font', family='Times New Roman') fig=plt.figure() ax=fig.add_axes([0.1,0.1,0.8,0.8]) ax.semilogx() for key, ob in self.obsdict.iteritems(): upperinds = np.array(ob.isupperlist) detectinds = np.array([not a for a in ob.isupperlist]) tmidarr = np.array(ob.tmidlist)[detectinds] magarr = np.array(ob.maglist)[detectinds] if detectinds.any(): # only plot here if we have at least one detection ind = 0 # loop through each pair of mags while ind < len(magarr) - 1: mag1 = magarr[ind] mag2 = magarr[ind+1] t1 = tmidarr[ind] t2 = tmidarr[ind+1] tmid = (t1 + t2)/2.0 alpha = mag2alpha(mag_1=mag1,mag_2=mag2,t_1=t1,t_2=t2) ax.plot(tmid,alpha, color=ob.color, marker=ob.marker) ind += 1 ax.set_ylabel(r'$\alpha$',size=16) ax.set_xlabel(r'$t_{mid}$ (s)',size=16) fig.show()
def show_plate(): import matplotlib.pyplot as plt from matplotlib import rc import daft plt.rcParams['figure.figsize'] = 14, 8 rc("font", family="serif", size=12) rc("text", usetex=False) pgm = daft.PGM(shape=[2.5, 3.5], origin=[0, 0], grid_unit=4, label_params={'fontsize':18}, observed_style='shaded') pgm.add_node(daft.Node("lambda", r"$\lambda$", 1, 2.4, scale=2)) pgm.add_node(daft.Node("alpha_0", r"$\alpha_0$", 0.8, 3, scale=2, fixed=True, offset=(0,10))) pgm.add_node(daft.Node("lambda_0", r"$\lambda_0$", 1.2, 3, scale=2, fixed=True, offset=(0,6))) pgm.add_node(daft.Node("y", r"$y_i$", 1, 1.4, scale=2, observed=True)) pgm.add_plate(daft.Plate([0.5, 0.7, 1, 1.3], label=r"$i \in 1:N$", shift=-0.1)) pgm.add_edge("alpha_0", "lambda") pgm.add_edge("lambda_0", "lambda") pgm.add_edge("lambda", "y") pgm.render() plt.show()
def plot_bias(bias_list, fpath): import matplotlib as mpl import matplotlib.pyplot as plt import seaborn as sns sys.stderr.write("saving to %s\n" % fpath) p = sns.color_palette("deep", desat=.8) c1, c2 = p[0], p[-1] c1, c2 = sns.color_palette("Set1", 2) mpl.rc("figure", figsize=(8, 4)) f, ax1 = plt.subplots(1) xs = [int(x['base']) for x in bias_list] ax1.plot(xs, [100 * float(x['read_1']) for x in bias_list], c=c1, label="read 1") ax1.plot(xs, [100 * float(x['read_2']) for x in bias_list], c=c2, label="read 2") ax1.axvline(x=4, c="#aaaaaa", alpha=0.8, linewidth=3, zorder=-1) ax1.axvline(x=max(xs) - 4, c="#aaaaaa", alpha=0.8, linewidth=3, zorder=-1) ax1.legend(loc='upper center') ax1.set_xlim(min(xs), max(xs)) ax1.set_ylabel('mean CG % methylation') ax1.set_xlabel('position along read') ax1.set_title('Methylation Bias Plot (vertical lines at 4 bases from end)') ax1.grid('off') f.tight_layout() f.savefig(fpath)
def plot_config(filetype='png'): import matplotlib # matplotlib.use('pdf') import matplotlib.pyplot params = { 'text.usetex': True, 'figure.dpi' : 300, 'savefig.dpi' : 300, 'savefig.format' : filetype, # 'axes.labelsize': 8, # fontsize for x and y labels (was 10) # 'axes.titlesize': 8, # 'text.fontsize': 8, # was 10 # 'legend.fontsize': 8, # was 10 # 'xtick.labelsize': 8, # 'ytick.labelsize': 8, # 'figure.figsize': [fig_width,fig_height], 'font.family': 'serif', 'text.latex.preamble': [r'\usepackage[]{siunitx}' r'\usepackage[]{mhchem}'], } matplotlib.rcParams.update(params) matplotlib.style.use('bmh') matplotlib.style.use('seaborn-paper') # matplotlib.style.use('seaborn-dark-palette') matplotlib.rc('axes', facecolor='white') matplotlib.rc('grid', linestyle='-', alpha=0.0)
def create_figures(data): import numpy as np print "# Creating figure ..." # prepare matplotlib import matplotlib matplotlib.rc("font",**{"family":"sans-serif"}) matplotlib.rcParams.update({'font.size': 14}) matplotlib.rc("text", usetex=True) matplotlib.use("PDF") import matplotlib.pyplot as plt # KSP plt.figure(1) n, bins, patches = plt.hist(data[:, 1], bins = 50, fc = "k", ec = "w") plt.xticks(range(300, 1001, 100), range(300, 1001, 100)) plt.yticks(range(0, 17, 2), range(0, 17, 2)) plt.xlabel("Model years") plt.ylabel("Occurrence") plt.savefig("parameterrange-ksp", bbox_inches = "tight") # SNES plt.figure(2) n, bins, patches = plt.hist(data[:, 0], bins = 50, fc = "k", ec = "w") plt.xticks(range(5, 46, 5), range(5, 46, 5)) plt.yticks(range(0, 15, 2), range(0, 15, 2)) plt.xlabel("Newton steps") plt.ylabel("Occurrence") plt.savefig("parameterrange-snes", bbox_inches = "tight")
def _test_determinism_save(filename, usetex): # This function is mostly copy&paste from "def test_visibility" # To require no GUI, we use Figure and FigureCanvasSVG # instead of plt.figure and fig.savefig from matplotlib.figure import Figure from matplotlib.backends.backend_svg import FigureCanvasSVG from matplotlib import rc rc('svg', hashsalt='asdf') rc('text', usetex=usetex) fig = Figure() ax = fig.add_subplot(111) x = np.linspace(0, 4 * np.pi, 50) y = np.sin(x) yerr = np.ones_like(y) a, b, c = ax.errorbar(x, y, yerr=yerr, fmt='ko') for artist in b: artist.set_visible(False) ax.set_title('A string $1+2+\\sigma$') ax.set_xlabel('A string $1+2+\\sigma$') ax.set_ylabel('A string $1+2+\\sigma$') FigureCanvasSVG(fig).print_svg(filename)
def plot_sleipner_thick_contact(self, years, gwc = False, sim_title = ''): if gwc == True: tc_str = 'contact' else: tc_str = 'thickness' yr_indices = self.get_plan_year_indices(years) size = 14 font = {'size' : size} matplotlib.rc('font', **font) fig = plt.figure(figsize=(10.0, 2.5), dpi = 960) middle = len(years) * 10 pos = 100 + middle for n in range(len(yr_indices)): pos +=1 ax = fig.add_subplot(pos) xf = [] yf = [] kf = [] for i in range(self.nx): tempx = [] tempy = [] tempk = [] for j in range(self.ny): x = self.x[(i, j, 0)] y = self.y[(i, j, 0)] tn = yr_indices[n] thick, contact = self.get_thick_contact(i, j, tn) tempx.append(x) tempy.append(y) if gwc == True: tempk.append(contact) else: tempk.append(thick) xf.append(tempx) yf.append(tempy) kf.append(tempk) xp = np.asarray(xf) yp = np.asarray(yf) kp = np.asarray(kf) N = 10 contour_label = False ax_label = False c = ax.contourf(xp, yp, kp, N) plt.tick_params(which='major', length=3, color = 'w') if n == len(years) - 1: fig.subplots_adjust(right=0.84) cb_axes = fig.add_axes([0.85, 0.15, 0.05, 0.7]) plt.tick_params(which='major', length=3, color = 'k') cb = fig.colorbar(c, cax = cb_axes, format = '%.2f') cb.set_ticks(np.linspace(np.amin(kp), np.amax(kp), N)) cb.set_label(tc_str + ': [m]') if n != 0: ax.set_yticklabels([]) ax.set_xticklabels([]) ax.set_title(str(years[n])) ax.axis([0, 3000, 0, 6000]) ax.xaxis.set_ticks(np.arange(0,3500,1000)) plt.savefig(sim_title + '_' + tc_str + '.pdf', fmt = 'pdf') plt.clf() return 0
def subplot_modes(modes): """ modes is a list of lists (one for each natural frequency) each sublist contains 3-comp tuples with (label, freq, mode) """ n = len(modes) print "\nPloting {0} first modes:".format(n) # initiate plot fig, axarr = plt.subplots(n, sharex=True) rc('font', **{'family': 'sans-serif', 'sans-serif': ['Computer Modern Roman']}) # rc('text', usetex=True) legend_kwargs = {'loc': 'center left', 'bbox_to_anchor': (1, 0.5)} for i, mode_container in enumerate(modes): print "\nMode {0}".format(i+1) legend = map(lambda x: " ".join((x[0], "(f={0:.2f} Hz)".format(x[1]))), mode_container) modes_i = map(lambda x: x[2], mode_container) for j, mode in enumerate(modes_i): x = np.linspace(0, L, len(mode)) axarr[i].plot(x, mode, style_gen(j, j)) axarr[i].legend(legend, **legend_kwargs) axarr[i].grid() axarr[n-1].set_xlabel(r"Length of the beam ($y$ axis) in meters") axarr[n/2].set_ylabel(r"Normalized deflection") plt.subplots_adjust(right=0.6)
def plotLearning(self, filename): """ Plot evolution of weights throughout the training process """ if not self.trackLearning: raise Exception("cannot plot, no tracking data") font = {'size' : 10} matplotlib.rc('font', **font) plt.figure() # create two plots in a single image # top half for error plt.subplot(211) plt.title("Evolution of Error and Weights") plt.plot(self.errorHistoryX, self.errorHistoryY, label='Error') plt.ylabel('prediction error') plt.grid(True) plt.ylim(bottom=0.0, top=1.0) # bottom half for weights plt.subplot(212) for layerName in self.preceptronLayers.keys(): layer = self.preceptronLayers[layerName] plt.plot(self.errorHistoryX, layer.weightsHistory, label='{0}'.format(layerName)) plt.ylabel('root sum square of weights') plt.grid(True) plt.legend(loc="best", prop={'size': 6}) plt.xlabel('epochs') plt.savefig(filename)
def __init__(self, discrete_bool, co2_data): # matplot steup mpl.rc('font',**{'family':'sans-serif','sans-serif':['Helvetica']}) mpl.rcParams['text.usetex'] = True mpl.rcParams['xtick.labelsize'] = 30 mpl.rcParams['xtick.color'] = "white" mpl.rcParams['ytick.labelsize'] = 12 mpl.rcParams['axes.edgecolor'] = 'white' mpl.rcParams['axes.linewidth'] = 0. mpl.rcParams['axes.labelcolor'] = 'white' # is the figure discrete or not? if discrete_bool: # create figure self.n = len(co2_data[:,0]) self.fig = plt.figure(figsize = (4*self.n, 3),dpi = 80) # assign the data, is array self.data = co2_data # for continuous else: self.fig = plt.figure(figsize=(10, 1.8), dpi = 80) self.min_x = co2_data[0] self.max_x = co2_data[1]
def plot_runtime_results(results): plt.rcParams["figure.figsize"] = 7,7 plt.rcParams["font.size"] = 22 matplotlib.rc("xtick", labelsize=24) matplotlib.rc("ytick", labelsize=24) params = {"text.fontsize" : 32, "font.size" : 32, "legend.fontsize" : 30, "axes.labelsize" : 32, "text.usetex" : False } plt.rcParams.update(params) #plt.semilogx(results[:,0], results[:,3], 'r-x', lw=3) #plt.semilogx(results[:,0], results[:,1], 'g-D', lw=3) #plt.semilogx(results[:,0], results[:,2], 'b-s', lw=3) plt.plot(results[:,0], results[:,3], 'r-x', lw=3, ms=10) plt.plot(results[:,0], results[:,1], 'g-D', lw=3, ms=10) plt.plot(results[:,0], results[:,2], 'b-s', lw=3, ms=10) plt.legend(["Chain", "Tree", "FFT Tree"], loc="upper left") plt.xticks([1e5, 2e5, 3e5]) plt.yticks([0, 60, 120, 180]) plt.xlabel("Problem Size") plt.ylabel("Runtime (sec)") return results
def Power_Spectrum_Plot_Construction(Gravity_obj,file_loc_save="Report/",file_loc_load="Output/Power_Spectrum_data/"): rc('text',usetex=True) Setting_number = Gravity_obj.output.Power_Spectrum_Setting_number (t , r , Ricci) = loadtxt(file_loc_load+Gravity_obj.output.Power_Spectrum_file_name,dtype='float',comments='#',unpack=True) for i in range(Gravity_obj.output.Power_Spectrum_points): t_local = zeros(len(t)/Gravity_obj.output.Power_Spectrum_points) Ricci_local = zeros(len(t)/Gravity_obj.output.Power_Spectrum_points) for j in range(len(t)/Gravity_obj.output.Power_Spectrum_points): t_local[j] = t[j*Gravity_obj.output.Power_Spectrum_points+i] Ricci_local[j] = Ricci[j*Gravity_obj.output.Power_Spectrum_points+i] (k,pk) = Power_Spectrum_1D_Cal(t_local,Ricci_local,Setting_number) clf() loglog(k,pk/pk[1]) coef = Linear_Fit_Line(log(k[len(k)/10:len(k)-1]),log(pk[len(k)/10:len(k)-1]/pk[1])) Gravity_obj.field.Power_Spec_n.append(coef[0]) loglog(k,coef[1]*k**coef[0],label=r'$\propto k^{ %0.2f }$'%Gravity_obj.field.Power_Spec_n[i]) legend() xlabel(r'$\omega$',fontsize = 20) ylabel(r'$P(\omega)$',fontsize = 20) title(r'$r = '+str(r[i])+r'$',fontsize = 20) fdir = file_loc_save fname = 'Power_Spectrum%02d.pdf'%(i+1) print 'n = ', Gravity_obj.field.Power_Spec_n[i] print 'Saving plot', fname savefig(fdir+fname) rc('text',usetex=False)
def config_mpl(): mpl.rc('lines', linewidth=1.5) mpl.rc('font', family='Times New Roman', size=16, monospace='Courier New') mpl.rc('legend', fontsize='small', fancybox=False, labelspacing=0.1, borderpad=0.1, borderaxespad=0.2) mpl.rc('figure', figsize=(12, 10)) mpl.rc('savefig', dpi=120)
def __get_plot_dict(plot_style): """Define plot styles.""" plot_dict = { Data.condor_running: ("Jobs running", "#b8c9ec"), # light blue Data.condor_idle: ("Jobs available", "#fdbe81"), # light orange Data.vm_requested: ("Slots requested", "#fb8a1c"), # orange Data.vm_running: ("Slots available", "#2c7bb6"), # blue Data.vm_draining: ("Slots draining", "#7f69db"), # light blue } font = {"family": "sans", "size": 20} matplotlib.rc("font", **font) matplotlib.rcParams['pdf.fonttype'] = 42 matplotlib.rcParams['ps.fonttype'] = 42 if plot_style == "slide": matplotlib.rcParams["figure.figsize"] = 18, 8 matplotlib.rcParams["svg.fonttype"] = "none" matplotlib.rcParams["path.simplify"] = True matplotlib.rcParams["path.simplify_threshold"] = 0.5 matplotlib.rcParams["font.sans-serif"] = "Linux Biolinum O" matplotlib.rcParams["font.family"] = "sans-serif" matplotlib.rcParams["figure.dpi"] = 300 elif plot_style == "screen": pass else: raise ValueError("Plotting style unknown!") return plot_dict
def plotAvgError(p1_win, p1_var, p2_all_win, p2_all_var, p2_day_win, p2_day_var, y_max=8): matplotlib.rc('font', size=18) width = 2 index = np.arange(0, 7 * width * len(budget_cnts), width * 7) fig, ax = plt.subplots() rect1 = ax.bar(index, p1_win, width, color='b', hatch='/') rect2 = ax.bar(index + width, p1_var, width, color='r', hatch='\\') rect3 = ax.bar(index + width*2, p2_all_win, width, color='g', hatch='//') rect4 = ax.bar(index + width*3, p2_all_var, width, color='c', hatch='\\') rect5 = ax.bar(index + width*4, p2_day_win, width, color='m', hatch='x') rect6 = ax.bar(index + width*5, p2_day_var, width, color='y', hatch='//') ax.set_xlim([-3, 7 * width * (len(budget_cnts) + 0.1)]) ax.set_ylim([0, y_max]) ax.set_ylabel('Mean Absolute Error') ax.set_xlabel('Budget Count') ax.set_xticks(index + width * 2.5) ax.set_xticklabels(('0', '5', '10', '20', '25')) ax.legend((rect1[0], rect2[0], rect3[0], rect4[0], rect5[0], rect6[0]), ('Phase 1 Window', 'Phase 1 Variance', 'Phase 2 H-Window', 'Phase 2 H-Variance', 'Phase 2 D-Window', 'Phase 2 D-Variance'), ncol=2, fontsize=15) plt.grid() plt.savefig('%s_err.eps' % topic, format='eps', bbox_inches='tight')
def show_cmaps(names=None): """display all colormaps included in the names list. If names is None, all defined colormaps will be shown.""" # base code from http://www.scipy.org/Cookbook/Matplotlib/Show_colormaps matplotlib.rc("text", usetex=False) a = np.outer(np.arange(0, 1, 0.01), np.ones(10)) # pseudo image data f = plt.figure(figsize=(10, 5)) f.subplots_adjust(top=0.8, bottom=0.05, left=0.01, right=0.99) # get list of all colormap names # this only obtains names of built-in colormaps: maps = [m for m in cm.datad if not m.endswith("_r")] # use undocumented cmap_d dictionary instead maps = [m for m in cm.cmap_d if not m.endswith("_r")] maps.sort() # determine number of subplots to make l = len(maps) + 1 if names is not None: l = len(names) # assume all names are correct! # loop over maps and plot the selected ones i = 0 for m in maps: if names is None or m in names: i += 1 ax = plt.subplot(1, l, i) ax.axis("off") plt.imshow(a, aspect="auto", cmap=cm.get_cmap(m), origin="lower") plt.title(m, rotation=90, fontsize=10, verticalalignment="bottom") plt.savefig("colormaps.png", dpi=100, facecolor="gray")
def __init__(self, parent, sz = None): self._canvas_options = options.PlotCanvasOptions() matplotlib.rc('font', **self.canvas_options.fontdict) super(PlotCanvas, self).__init__(parent, wx.ID_ANY, style=wx.RAISED_BORDER) if not sz: self.delegate = wxagg.FigureCanvasWxAgg(self, wx.ID_ANY, plt.Figure(facecolor=(0.9,0.9,0.9))) else: self.delegate = wxagg.FigureCanvasWxAgg(self, wx.ID_ANY, plt.Figure(facecolor=(0.9, 0.9, 0.9), figsize=sz)) sizer = wx.BoxSizer(wx.HORIZONTAL) sizer.Add(self.delegate, 1, wx.EXPAND) self.plot = self.delegate.figure.add_axes([0.1,0.1,0.8,0.8]) self.pointsets = [] self.delegate.figure.canvas.mpl_connect('pick_event', self.on_pick) self.delegate.figure.canvas.mpl_connect('motion_notify_event', self.on_motion) # self.figure.canvas.mpl_connect('motion_notify_event',self.on_motion) self.annotations = {} # used to index into when there is a pick event self.picking_table = {} self.dist_point = None self.SetSizerAndFit(sizer)
def update_graph(self): self.plot.clear() self.picking_table = {} iattrs = set() dattrs = set() matplotlib.rc('font', **self.canvas_options.fontdict) # for now, plot everything on the same axis error_bars = self.canvas_options.show_error_bars for points, opts in self.pointsets: if not opts.is_graphed: continue points = self.canvas_options.modify_pointset(self,points) self.picking_table[points.label] = points opts.plot_with(self, points, self.plot, error_bars) iattrs.add(points.independent_var_name) dattrs.add(points.variable_name) if self.canvas_options.show_axes_labels: self.plot.set_xlabel(", ".join([i or "" for i in iattrs]), fontdict=self.canvas_options.fontdict) self.plot.set_ylabel(", ".join([d or "" for d in dattrs]), fontdict=self.canvas_options.fontdict) self.canvas_options.plot_with(self, self.plot) self.draw()
def barplot(self, filename='', idx=None): """ Plot a generic barplot using just the yVars. idx is the index of the each y-variable to be plotted. if not given, the last value will be used """ import numpy mpl.rc('font',family='sans-serif') fig = plt.figure() ax = fig.add_subplot(111) position = numpy.arange(len(self.yVar),0,-1) # Reverse in order to go front top to bottom if not idx: idx = -1 ax.barh(position, numpy.array([y.data[idx] for y in self.yVar]), align='center', alpha=0.5) plt.yticks(position, [y.label for y in self.yVar]) # If any labels or titles are explicitly specified, write them if self.xlabel: plt.xlabel(self.xlabel) if self.ylabel: plt.ylabel(self.ylabel) if self.title: plt.title(self.title) plt.axis('tight') fig.savefig(filename, bbox_inches='tight')
def plotBottleneck(maxGen=None,obs=False,mean=True,color='blue'): exit() def plotOne(df, ax, method): m=df.mean(1) s=df.std(1) # plt.locator_params(nbins=4); m.plot(ax=ax, legend=False, linewidth=3, color=color) x=m.index.values m=m.values;s=s.values ax.fill_between(x, m - 2 * s, m + 2 * s, color=color, alpha=0.3) ax.set_ylabel(method.strip()) ax.set_ylim([-0.1, ax.get_ylim()[1]]) pplt.setSize(ax) dfn = \ pd.read_pickle(path + 'nu{}.s{}.df'.format(0.005, 0.0)) fig, ax = plt.subplots(3, 1, sharex=True, figsize=(4, 3), dpi=300) plotOne(dfn['tajimaD'], ax[0], "Tajima's $D$"); plt.xlabel('Generations') plotOne(dfn['HAF'], ax[1], "Fay Wu's $H$"); plt.xlabel('Generations') plotOne(dfn['SFSelect'], ax[2], 'SFSelect'); plt.xlabel('Generations') plt.gcf().subplots_adjust(bottom=0.25) mpl.rc('font', **{'family': 'serif', 'serif': ['Computer Modern']}); mpl.rc('text', usetex=True) pplt.savefig('bottleneck', 300) plt.show()
def plotLDDecaySelection3d(ax, sweep=False): import pylab as plt; import matplotlib as mpl;mpl.rc('font', **{'family': 'serif', 'serif': ['Computer Modern'], 'size':16}) ; mpl.rc('text', usetex=True) def neutral(ld0, t, d, r=2 * 1e-8): if abs(d) <= 5e3: d = np.sign(d) * 5e3 if d == 0: d = 5e3 return ((np.exp(-2 * r * t * abs(d)))) * ld0 t = np.arange(0, 200 + 1., 2) L=1e6+1 pos=500000 r=2*1e-8 ld0 = 0.5 s = 0.05 nu0 = 0.1 positions=np.arange(0,L,1000) dist=(positions - pos) T, D = np.meshgrid(t, dist) if not sweep: zs = np.array([neutral(ld0, t, d) for t, d in zip(np.ravel(T), np.ravel(D))]) else: zs = np.array([LD(t, ld0, s, nu0, r, abs(d), 0) for t, d in zip(np.ravel(T), np.ravel(D))]) Z = zs.reshape(T.shape) ax.plot_surface(T, D, Z,cmap=mpl.cm.autumn) ax.set_xlabel('Generations') ax.set_ylabel('Position') plt.yticks(plt.yticks()[0][1:-1],map(lambda x:'{:.0f}K'.format((pos+(x))/1000),plt.yticks()[0][1:-1])) plt.ylim([-500000,500000]) ax.set_zlabel(r"$|\rho_t|$") pplt.setSize(plt.gca(), fontsize=6) plt.axis('tight');
'xtick.major.pad' : 25, # distance to major tick label in points 'xtick.minor.pad' : 25, # distance to the minor tick label in points 'ytick.major.pad' : 8, # distance to major tick label in points 'ytick.minor.pad' : 8, # distance to the minor tick label in points 'xtick.labelsize': 16, 'ytick.labelsize': 16, 'figure.figsize': [8,8], 'figure.dpi': 800, # 'text.usetex': True, 'axes.unicode_minus': True, 'ps.usedistiller' : 'xpdf' } rc('font',**{'family':'serif','serif':['Helvetica']}) fig = plt.figure(figsize=(8,8)) ax = fig.gca(projection='3d') #kx, ky = Read_kpoints_for_3Dband('KPOINTS') #print len(kx), len(ky) #EIGEN_array = Read_eigenvalue_for_3Dband('EIGENVAL',-2.1097) # Make data. #nx, ny = (80, 80) #x = np.linspace(-0.16, 0.16, nx)
#=============================================================================# import numpy as np import matplotlib as mpl import matplotlib.pylab as plt import easyfit as ef import easyfy as ez import colormaps as cmaps from scipy import integrate from scipy.misc import comb import os import matplotlib.gridspec as gridspec #=============================================================================# # Setup Plot Settings #=============================================================================# mpl.rc('font', **{'sans-serif' : 'Arial','family' : 'serif'}) mpl.rcParams['legend.fancybox'] = True mpl.rcParams['legend.shadow'] = False mpl.rcParams['figure.dpi'] = 100 mpl.rcParams['ytick.major.pad'] = 5 mpl.rcParams['xtick.major.pad'] = 5 mpl.rcParams['axes.formatter.limits'] = (-3,3) plt.rcParams['pdf.fonttype'] = 42 plt.rc('font', **{'size':10}) legendFS = 10 textFS = 9 bgColor = 'w' eColor='k' colors = ez.colors()
# print(outproj) # print("\n\n") # cmap = colors.ListedColormap(['white', '#1A7DD1']) return [m, xx, yy, stack] ################ # Main program # ################ font = {'family' : 'sans-serif', 'size' : 18} matplotlib.rc('font', **font) # writer = animation.writers['imagemagick'] writer = animation.writers['ffmpeg'] # writer = writer(fps=2, metadata=dict(artist='Me'), bitrate=2400) h_in_inches = 12 w_in_inches = 9 fig = plt.figure(tight_layout=True, figsize=(h_in_inches, w_in_inches)) # fig.set_size_inches(h_in_inches, w_in_inches, True) mng = plt.get_current_fig_manager() # mng.resize(*mng.window.maxsize()) mng.full_screen_toggle()
from hawc_hal import HAL, HealpixConeROI, HealpixMapROI import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt mpl.use('Agg') mpl.rc("font", family="serif", size=14) import warnings from threeML.plugin_prototype import PluginPrototype from astromodels.core.sky_direction import SkyDirection import ROOT ROOT.PyConfig.IgnoreCommandLineOptions = True # This disable momentarily the printing of warnings, which you might get # if you don't have the Fermi ST or other software installed with warnings.catch_warnings(): warnings.simplefilter("ignore") from threeML import * #Load the data and detector response maptree = "maptree.hd5" response = "response.hd5" #Spectral description spectrum = Cutoff_powerlaw() shape = Gaussian_on_sphere() source = ExtendedSource("veritasellipse",
import random import shutil from pathlib import Path import cv2 import matplotlib import matplotlib.pyplot as plt import numpy as np import torch import torch.nn as nn import torchvision from tqdm import tqdm from . import torch_utils # , google_utils matplotlib.rc('font', **{'size': 11}) # Set printoptions torch.set_printoptions(linewidth=320, precision=5, profile='long') np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5 # Prevent OpenCV from multithreading (to use PyTorch DataLoader) cv2.setNumThreads(0) def floatn(x, n=3): # format floats to n decimals return float(format(x, '.%gf' % n)) def init_seeds(seed=0): random.seed(seed)
import numpy as np from sklearn.manifold import TSNE import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib import rc rc('text', usetex=True) rc('font', family='serif', size=26) e = np.load("ephys.npy").item() a = e['TT1']['spike_amplitudes'] print(a.shape) #a_embedded = TSNE(n_components=3).fit_transform(a) a_embedded = TSNE(n_components=2).fit_transform(a) fig = plt.figure(figsize=(8, 8)) #ax = fig.add_subplot(111, projection='3d') ax = fig.add_subplot(111) #ax.scatter(a_embedded[:,0], a_embedded[:,1], a_embedded[:,2]) ax.scatter(a_embedded[:, 0], a_embedded[:, 1]) plt.title('2d clustering tSNE') # ax.set_xlabel('dimension 1') # ax.set_ylabel('dimension 2') # ax.set_zlabel('dimension 3') # plt.savefig("tSNE_3d.png") # plt.savefig("tSNE_3d.pdf") plt.savefig("tSNE_2d.png") plt.savefig("tSNE_2d.pdf")
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Dec 24 21:54:13 2017 @author: yujia """ import ipot import numpy as np import ot import matplotlib.pyplot as plt import matplotlib matplotlib.rc('xtick', labelsize=20) matplotlib.rc('ytick', labelsize=20) n = 100 ###########data############# # bin positions x = np.arange(n, dtype=np.float64) # Gaussian distributions for input a1 = 0.5*ot.datasets.get_1D_gauss(n, m=70, s=9)+0.5*ot.datasets.get_1D_gauss(n, m=35, s=9) # m= mean, s= std a2 = 0.4*ot.datasets.get_1D_gauss(n, m=60, s=8)+0.6*ot.datasets.get_1D_gauss(n, m=40, s=6) print('This is the two input margins.' ) plt.plot(x, a1,'o-',color = 'orange',markersize=3)
def set_matplotlib_rc_params(): """ Set matplotlib rcparams for plotting """ font = {'family' : 'sans-serif', 'sans-serif' : 'Helvetica', 'style' : 'normal', 'variant' : 'normal', 'weight' : 'medium', 'stretch' : 'normal', 'size' : 12.0} rc('font', **font) legend = {'fontsize' : 10.0} rc('legend', **legend) axes = {'titlesize' : 14.0, 'labelsize' : 12.0} rc('axes', **axes) rc('pdf', fonttype=42) ticks = {'direction' : 'out', 'labelsize' : 12.0, 'major.pad' : 4, 'major.size' : 5, 'major.width' : 1.0, 'minor.pad' : 4, 'minor.size' : 2.5, 'minor.width' : 0.75} rc('xtick', **ticks) rc('ytick', **ticks)
print(workers_data) print(model_data) print(time_data) # matplotlib.rc('xtick', labelsize=8) # plt.plot(time_data.Time, sensor_data.Temperature) # ax = plt.gca() # #["{}{:02}".format(b_, a_) for a_, b_ in zip(a, b)] # ax.set_xticklabels(["Day {}\n{:%H:%M}".format(b_, a_) for a_, b_ in zip(time_data.Time, time_data.Day)]) # ax.set_yticklabels(["{:.0f} ºC".format(a) for a in sensor_data.Temperature]) # #ax.set_xticklabels(["(Day %d%s)" % t for t in zip(time_data.Time, time_data.Day)]) # plt.show() time_data["period"] = time_data.Day.map(str) + time_data.Time.map(str) matplotlib.rc('xtick', labelsize=8) fig, ax1 = plt.subplots() ax2 = ax1.twinx() temp_line = ax1.plot(range(0, len(time_data.Day.index)), sensor_data.Temperature, 'g-') stress_line = ax2.plot(range(0, len(time_data.Day.index)), model_data, 'b-', label='Stress') #ax1.set_xlabel('Days') #ax1.set_ylabel('Temperature', color='g') #ax2.set_ylabel('Stress', color='b') plt.xticks(range(0, len(time_data.Day.index)), [
# sys.setdefaultencoding('utf_8_sig') import matplotlib.pyplot as plt plt.rcdefaults() import matplotlib.pyplot as plt1 plt1.rcdefaults() from datetime import datetime import random from pylab import mpl mpl.rcParams['font.sans-serif'] = ['FangSong'] # 指定默认字体 mpl.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题 from matplotlib import rc rc('font', **{'family': 'sans-serif', 'sans-serif': ['AR PL KaitiM GB']}) import json # 生成cvs文件, 过滤数据, 清洗数据 # del_cvs_row('20171023.csv', 'rank_click_month_after.csv') # hotRowNum = 0 def pure_cvs_row(fname, newfname, delimiter=',', key='month'): with open(fname) as csvin, open(newfname, 'w') as csvout: reader = csv.reader(csvin, delimiter=delimiter) # print reader # rows = [row for row in reader] rows = [] writer = csv.writer(csvout, delimiter=delimiter) for row in reader:
import calculation as cl import numpy as np import matplotlib.pyplot as plt from matplotlib import font_manager, rc font_name = font_manager.FontProperties( fname="c:/Windows/Fonts/malgun.ttf").get_name() rc('font', family=font_name) # Input user's data and record to original data set(Need only what is handled in this project) def ui(user, avg, data, direction): if direction == 'y': print( "You can skip some Information. It will be replaced with average.\n" ) for i in [2, 5, 6, 7, 12, 13, 14, 15, 16, 17, 18, 25]: if i == 2: name = '(1. male 2. female)' elif i == 5: name = 'Height' elif i == 6: name = 'Weight' elif i == 7: name = 'Waist measurement' elif i == 12: name = 'Contraction Blood Pressure' elif i == 13: name = 'Relaxtion Blood Pressure'
# Version 0.3 May 2017, Gregor Moenke ([email protected]) ################################################################################## from __future__ import division, print_function import os, sys from pylab import * from math import atan2 from os import path, walk from scipy.optimize import leastsq from scipy.signal import hilbert, cwt, ricker, lombscargle, welch, morlet import pandas as pd from xlrd import * from matplotlib import rc rc('font', family='sans-serif', size=18) rc('lines', markeredgewidth=0) # global variables #----------------------------------------------------------- # thecmap = 'plasma' # the colormap for the wavelet spectra thecmap = 'viridis' # the colormap for the wavelet spectra omega0 = 2 * pi # central frequency of the mother wavelet ridge_def_dic = { 'y0': 0.5, 'T_ini': 0.1, 'Nsteps': 15000, 'max_jump': 3, 'curve_pen': 0.2, 'sub_s': 2, 'sub_t': 2
import torch.nn as nn import torch.nn.functional as F import os import torch import utils import matplotlib.pyplot as plt import matplotlib.mlab as mlab import matplotlib import numpy as np from copy import deepcopy matplotlib.rc('font', family='DejaVu Sans', size=20) import models.sketchanetfbin as sketchanetfbin import models.sketchanetwbin as sketchanetwbin alphas_list = [] betas_list = [] k_list = [] k_list_xnor = [] half_val = -1 old_alphas_list = [] cnt = 0 for i in range(0, 410): resume = "savedmodels/sketchanetwbin_tuberlin_epoch_" + str(i) + ".pth.tar" if os.path.isfile(resume): print("=> loading checkpoint '{}'".format(resume)) checkpoint = torch.load(resume) best_prec1 = checkpoint['best_prec1']
#! /usr/bin/env python3 import matplotlib matplotlib.use('agg') matplotlib.rc('text', usetex=True) import argparse import matplotlib.pyplot as plt import numpy as np import os import scipy.stats import misc.bio as bio import misc.bio_utils.bed_utils as bed_utils import misc.latex as latex import misc.math_utils as math_utils import riboutils.ribo_utils as ribo_utils default_uniprot = "" default_uniprot_label = "UniRef" default_title = "" def get_orf_lengths(orfs, orf_types): m_orf_type = orfs['orf_type'].isin(orf_types) lengths = np.array(orfs.loc[m_orf_type, 'orf_len']) return lengths def main(): parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter, description="This script creates a line graph showing the length distributions "
from __future__ import print_function import matplotlib as mpl font = {'size': 14} mpl.rc('font', **font) mpl.rcParams['toolbar'] = 'None' mpl.use('TkAgg') # <= the backend is crucial # figure.canvas.to_string_rgb() should return 24 bits image # the default Qt5Agg doesn't work from shutil import which import argparse import glob import os import time import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable from netCDF4 import Dataset from iosubdomains import Variable import movietools def init_figure(fig, str_time, field2d, Lx, Ly): """create the figure this is where you adapt the figure to your needs the function should return the graphical objects to update """ field_size = np.shape(field2d) zoom_x = (0.8*fig_size[0])//field_size[1]
@author: me """ import os.path from gdsCAD import * import numpy as np import matplotlib.pyplot as plt from math import log10, floor import matplotlib from matplotlib import style from matplotlib import cm style.use('ggplot') from matplotlib import rc import fitsig2 as fs2 import matplotlib.ticker rc('text', usetex=True) rc('figure', figsize=(22,14.2)) matplotlib.rcParams['font.serif'] = 'CMU Serif' matplotlib.rcParams['font.family'] = 'serif' matplotlib.rcParams['font.size'] = 22 LARGE_FONT= ("Segoe UI Semilight", 12) BUTTON_FONT = ("Segoe UI", 10) plt.ioff() f,ax = plt.subplots(2,2) fdict={} img='Schematic' r='Resistance $K/W$'
from premade import MOPRISM from ea import MOEAD from _utils import nsga_crossover, gaussian_mutator, random_crossover from surrogates import RBFN from sklearn.preprocessing import StandardScaler from benchmarks import (LZ1, LZ2, LZ3, LZ4, LZ5, LZ7, LZ8, LZ9) # RBFN surrogate kernels from pySOT.kernels import CubicKernel from pySOT.tails import LinearTail import matplotlib.pyplot as plt from matplotlib import rc # Matplotlib rc('font', **{'family': 'sans-serif', 'sans-serif': ['Helvetica']}) # for Palatino and other serif fonts use: # rc('font',**{'family':'serif','serif':['Palatino']}) rc('text', usetex=True) def run_sim(n, path, simtitle, REVOLUTION, PROBLEM, seed): POP_SIZE = 100 MAX_GENERATION = 50 MAX_EPISODE = 100 MAX_EVAL = 1000 STOPPING_RULE = 'max_eval' MUTATION_RATE = 0.1 MUTATION_U = 0. MUTATION_ST = 0.2
import numpy as np import matplotlib.pyplot as pp from matplotlib import rc #============================================================================== rc('text', usetex=True) markersize = 8 fontsize = 12 def one_by_one(inch_x=3.5, inch_y=3.5): fig = pp.figure(figsize=(inch_x, inch_y)) ax = fig.add_axes([0.15, 0.13, 0.8, 0.81]) pp.setp(ax.spines.values(), linewidth=0.7) ax.tick_params(axis='both', which='major', width=0.7) return ax def one_by_two(inch_x=6.5, inch_y=3.5): fig = pp.figure(figsize=(inch_x, inch_y)) ax_a = fig.add_axes([0.11, 0.14, 0.37, 0.8]) ax_b = fig.add_axes([0.61, 0.14, 0.37, 0.8]) ax_a.text(-0.26, 0.95,
#Question 7 : Les probabilités de rejet par la méthode de Monte-Carlo import numpy as np import matplotlib.pyplot as plt from random import * import scipy.special as ss import sympy as sy from matplotlib import rc rc('font', **{'family': 'serif', 'serif': ['Palatino']}) rc('text', usetex=True) nbs = 10000 #nombre de simulations a = 2.5 #alpha dans l'énoncé lbCF = (a - 1 / (6 * a)) / (a - 1) #lambda_CF dans l'énoncé lb_s = np.power(((a + 1) / (a - 1)), (a + 1) / 2) #lambda soulignée dans l'énoncé C = np.exp(a - 1) * ss.gamma(a) / (2 * np.power((a - 1), a)) pRejetCF = 1 - C / lbCF #la valeur théorique de la probabilité de rejet pour lamba_CF pRejet_s = 1 - C / lb_s #la valeur héorique de la probabilité de rejet pour lambda soulignée def estDansA(X, lb): #teste si X appartient à A if ((2 / (a - 1)) * np.log(X[0]) - np.log(lb * X[1] / X[0]) + lb * X[1] / X[0] - 1 <= 0): return 1 return 0 N = 0 M = 0 X = [random(), random()] for i in range(nbs): if estDansA(X, lb_s) == 0:
import tensorflow as tf import matplotlib matplotlib.use('TkAgg') import matplotlib.font_manager import matplotlib.pyplot as plt from matplotlib import rc import numpy as np # matplot 에서 한글을 표시하기 위한 설정 rc('font', family='AppleGothic') plt.rcParams['axes.unicode_minus'] = False # 단어 벡터를 분석해볼 임의의 문장들 sentences = ["나 고양이 좋다", "나 강아지 좋다", "나 동물 좋다", "강아지 고양이 동물", "여자친구 고양이 강아지 좋다", "고양이 생선 우유 좋다", "강아지 생선 싫다 우유 좋다", "강아지 고양이 눈 좋다", "나 여자친구 좋다", "여자친구 나 싫다", "여자친구 나 영화 책 음악 좋다", "나 게임 만화 애니 좋다", "고양이 강아지 싫다", "강아지 고양이 좋다"] # 문장을 전부 합친 후 공백으로 단어들을 나누고 고유한 단어들로 리스트를 만듭니다. word_sequence = " ".join(sentences).split()
baseEventTimes.size) # Times between consecutive events. interArrivalTimes[1:] = baseEventTimes[ 1:] - baseEventTimes[: -1] # First event is when we start counting time, no interarrival time for it. """ PLOT THE EMPIRICAL DATA AND FITTED CONDITIONAL INTENSITIES. """ fig = matplotlib.pyplot.figure() ax = fig.gca() labelsFontSize = 16 ticksFontSize = 14 fig.suptitle(r"$Conditional\ intensity\ VS\ time$", fontsize=20) ax.grid(True) ax.set_xlabel(r'$Time\ (seconds\ since\ epoch)$', fontsize=labelsFontSize) ax.set_ylabel(r'$\lambda$', fontsize=labelsFontSize) matplotlib.rc('xtick', labelsize=ticksFontSize) matplotlib.rc('ytick', labelsize=ticksFontSize) # Plot the empirical binned data. ax.plot(empirical_1min.index.to_pydatetime(), empirical_1min.values, color='blue', linestyle='solid', marker=None, markerfacecolor='blue', markersize=12) empiricalPlot = matplotlib.lines.Line2D([], [], color='blue', linestyle='solid', marker=None, markerfacecolor='blue',
import os import numpy as np import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt VISUAL_DATA = '../visual' mpl.rcParams['font.size'] = 15 mpl.rc('lines', linewidth=3) def _smooth_metric(metr): for idx in range(len(metr)): if metr[idx] < 0.0: if len(metr) > 1: if idx == 0: metr[idx] = metr[idx + 1] continue if idx == len(metr) - 1: metr[idx] = metr[idx - 1] continue metr[idx] = (metr[idx - 1] + metr[idx + 1]) / 2.0 else: metr[idx] = 0.0 return metr def _visualize_metric(net_name, metric_name, epochs, train_metric, val_metric): plt.clf() plt.figure(figsize=(18, 12))
def annotate3d(centroids, image, **kwargs): """Annotates a 3D image and returns a scrollable stack for display in IPython. Parameters ---------- centroids : DataFrame including columns x and y image : image array (or string path to image file) circle_size : Deprecated. This will be removed in a future version of trackpy. Use `plot_style={'markersize': ...}` instead. color : single matplotlib color or a list of multiple colors default None invert : If you give a filepath as the image, specify whether to invert black and white. Default True. ax : matplotlib axes object, defaults to current axes split_category : string, parameter to use to split the data into sections default None split_thresh : single value or list of ints or floats to split particles into sections for plotting in multiple colors. List items should be ordered by increasing value. default None imshow_style : dictionary of keyword arguments passed through to the `Axes.imshow(...)` command the displays the image plot_style : dictionary of keyword arguments passed through to the `Axes.plot(...)` command that marks the features Returns ------- pims.Frame object containing a three-dimensional RGBA image See Also -------- annotate : annotation of 2D images """ if plots_to_frame is None: raise ImportError('annotate3d requires pims 0.3 or later. Please ' 'install/update pims') import matplotlib as mpl import matplotlib.pyplot as plt if image.ndim != 3 and not (image.ndim == 4 and image.shape[-1] in (3, 4)): raise ValueError("image has incorrect dimensions. Please input a 3D " "grayscale or RGB(A) image. For 2D image annotation, " "use annotate. Multichannel images can be " "converted to RGB using pims.display.to_rgb.") # We want to normalize on the full image and stop imshow from normalizing. normalized = (normalize(image) * 255).astype(np.uint8) imshow_style = dict(vmin=0, vmax=255) if '_imshow_style' in kwargs: kwargs['imshow_style'].update(imshow_style) else: kwargs['imshow_style'] = imshow_style max_open_warning = mpl.rcParams['figure.max_open_warning'] was_interactive = plt.isinteractive() try: # Suppress warning when many figures are opened mpl.rc('figure', max_open_warning=0) # Turn off interactive mode (else the closed plots leave emtpy space) plt.ioff() figures = [None] * len(normalized) for i, imageZ in enumerate(normalized): fig = plt.figure() kwargs['ax'] = fig.gca() centroidsZ = centroids[(centroids['z'] > i - 0.5) & (centroids['z'] < i + 0.5)] annotate(centroidsZ, imageZ, **kwargs) figures[i] = fig result = plots_to_frame(figures, width=512, close_fig=True, bbox_inches='tight') finally: # put matplotlib back in original state if was_interactive: plt.ion() mpl.rc('figure', max_open_warning=max_open_warning) return result
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor from itertools import chain from functools import partial from collections import Iterable, Counter, OrderedDict from isoweek import Week from pandas_summary import DataFrameSummary from IPython.lib.display import FileLink from PIL import Image, ImageEnhance, ImageOps from sklearn import metrics, ensemble, preprocessing from operator import itemgetter, attrgetter from pathlib import Path from distutils.version import LooseVersion from matplotlib import pyplot as plt, rcParams, animation from ipywidgets import interact, interactive, fixed, widgets matplotlib.rc('animation', html='html5') np.set_printoptions(precision=5, linewidth=110, suppress=True) from ipykernel.kernelapp import IPKernelApp def in_notebook(): return IPKernelApp.initialized() def in_ipynb(): try: #cls = get_ipython().__class__.__name__ #return cls == 'ZMQInteractiveShell' return False except NameError: return False import tqdm as tq from tqdm import tqdm_notebook, tnrange
from Hamiltonian_Classes import Hamiltonian, H_table, clock_Hamiltonian, spin_Hamiltonian from System_Classes import unlocking_System from Symmetry_Classes import translational, parity, model_sym_data, charge_conjugation # from Plotting_Classes import eig_overlap,fidelity,entropy,energy_basis from Non_observables import zm from Construction_functions import bin_to_int_base_m, int_to_bin_base_m, cycle_bits_state from Search_functions import find_index_bisection from State_Classes import zm_state, sym_state, prod_state, bin_state, ref_state from rw_functions import save_obj, load_obj from Calculations import level_stats, fidelity, eig_overlap, entropy, site_precession, site_projection, time_evolve_state from matplotlib import rc rc('font', **{ 'family': 'sans-serif', 'sans-serif': ['Computer Modern'], 'size': 26 }) ## for Palatino and other serif fonts use: #rc('font',**{'family':'serif','serif':['Palatino']}) rc('text', usetex=True) # matplotlib.rcParams['figure.dpi'] = 400 def krylov(v, H, krylov_size): #generate subspace by repeated application of H temp = v for n in range(0, krylov_size): temp = np.dot(H, temp) v = np.vstack((v, temp))
def analyzePollutionCompare(): reload(sys) sys.setdefaultencoding('utf-8') font_name = font_manager.FontProperties( fname="c:/Windows/Fonts/malgun.ttf").get_name() rc('font', family=font_name) # 2016년 대기오염 평균 csv 파일 읽어오기 # 연도, 이산화질소농도(ppm), 오존농도(ppm), 일산화탄소농도(ppm), 아황산가스(ppm), 미세먼지(㎍/㎥), 초미세먼지(㎍/㎥) pollutionData = [[0 for col in range(0)] for row in range(6)] polltutionDatafile = 'csv/SeoulAirpollution.csv' with open(polltutionDatafile, 'rt') as f: rowData = csv.reader(f, delimiter=',') for colIdx2, data in enumerate(rowData): for colIdx1, d in enumerate(data): if colIdx1 == 0: continue pollutionData[colIdx1 - 1].insert(colIdx2, float(d)) # 정규화 처리 # 공식 : (X - min(X') / (max(X') - min(X')) for idx, pol in enumerate(pollutionData): minVal = min(pollutionData[idx]) maxVal = max(pollutionData[idx]) for valIdx, val in enumerate(pol): rangeVal = (maxVal - minVal) pollutionData[idx][valIdx] = (pollutionData[idx][valIdx] - minVal) / rangeVal # 오염 제목 리스트 polName = ["이산화질소", "오존", "일산화탄소", "아황산가스", "미세먼지", "초미세먼지"] # X축 월별 배열 정보 선언 month = ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12'] # 비교대상 오염정보 Index nPolIndex = 0 # 2016년 대기오염 정보 plot 설정 f, axarr = plt.subplots(2, 3) # 비교대상 오염정보와 타 오염정보를 비교함 xIdx = 0 yIdx = 0 for idx, data in enumerate(pollutionData): if idx == nPolIndex: continue axarr[xIdx, yIdx].plot(month, pollutionData[nPolIndex], 'b-o', label=polName[nPolIndex]) axarr[xIdx, yIdx].plot(month, data, 'r-s', label=polName[idx]) axarr[xIdx, yIdx].set_title(polName[nPolIndex] + " / " + polName[idx]) #axarr[xIdx, yIdx].set_xlabel("월") axarr[xIdx, yIdx].set_ylabel("오염도 ") axarr[xIdx, yIdx].legend() yIdx += 1 if (yIdx > 2): xIdx += 1 yIdx = 0 # 그래프 노출 plt.show()
# http://www.scipy-lectures.org/intro/matplotlib/matplotlib.html import numpy as np import matplotlib.pyplot as plt from pylab import * from matplotlib import rc, rcParams import matplotlib.dates as dates # activate latex text rendering rc('text', usetex=True) rc('axes', linewidth=2) rc('font', weight='bold') rcParams['text.latex.preamble'] = [r'\usepackage{sfmath} \boldmath'] Dropout_Bald_TanH_0p005 = np.load('Dropout_Bald_TanH_0p005.npy') Dropout_Bald_V2 = np.load('Dropout_Bald_trial2.npy') Dropout_Bald_V3 = np.load('Dropout_Bald_trial3.npy') Dropout_Random_V3 = np.load('Dropout_Random_trial3.npy') BB_Alpha_Random_0p5 = np.load('BBAlpha_0p5_Random.npy') BB_Alpha_Random_10m6 = np.load('BBAlpha_10em6_Random.npy') BB_Alpha_Random_1 = np.load('BBAlpha_1_Random.npy') PBP_Bald = np.load('PBP_Bald.npy') PBP_Random = np.load('PBP_Random.npy') Dropout_Bald_YarinConfigs = np.load('Dropout_Bald_YarinConfigs.npy') Dropout_Bald_TanH_0p05 = np.load('Dropout_Bald_NewConfigsV4.npy') AEPDGP_Random = np.load('AEPDGP_Random.npy') Q = np.arange(20, 401, 1)
import pandas as pd # 데이터 저장하고 가공처리 import matplotlib as mpl # 그래프 그리기 import matplotlib.pyplot as plt # 그래프 그리기 # csv 파일 읽어 dataFrame 객체 만들고 , 인덱스 컬럼 point 설정 df = pd.read_csv('weather.csv', index_col='point', encoding='euc-kr') # print(df) # df.loc(label-location)을 이용해 특정 인덱스의 데이터만 가져오도록 함 city_df = df.loc[['서울', '인천', '대전', '대구', '광주', '부산', '울산']] print(city_df) # 데이터의 폰트를 설정한다 # matplotlib에서는 기본적으로 한글 표시가 되지 않으므로 한글 폰트를 지정 설정한다 font_name = mpl.font_manager.FontProperties( fname='C:/Windows/Fonts/malgun.ttf').get_name() mpl.rc('font', family=font_name) # 차트 종류 제목 크기 범례 폰트 크기 설정 ax = city_df.plot(kind='bar', title='날씨', figsize=(12, 4), legend=True, fontsize=12) ax.set_xlabel('도시', fontsize=12) ax.set_ylabel('기온/습도', fontsize=12) ax.legend(['기온', '습도'], fontsize=12) plt.show()
matavg = df['mat'].mean() print(matavg) # 78.0 # 학생들 중에 수학점수가 평균이하인 학생들의 정보를 추출 lower_math = df[df['mat'] <= matavg] print(lower_math) ''' class kor eng mat bio name andrew 1 45 45 56 98 dan 1 45 65 78 98 paul 2 87 67 65 56 walter 2 89 98 78 78 oscar 2 100 78 56 65 hugh 2 98 45 56 54 ''' rc('font',family=font_manager.FontProperties(fname="C:/WINDOWS/Fonts/H2GPRM.TTF").get_name()) print(plt.colormaps()) # 무슨색이 있는 지 확인 ''' ['Accent', 'Accent_r', 'Blues', 'Blues_r', 'BrBG', 'BrBG_r', 'BuGn', 'BuGn_r', 'BuPu', 'BuPu_r', 'CMRmap', 'CMRmap_r', 'Dark2', 'Dark2_r', 'GnBu', 'GnBu_r', 'Greens', 'Greens_r', 'Greys', 'Greys_r', 'OrRd', 'OrRd_r', 'Oranges', 'Oranges_r', 'PRGn', 'PRGn_r', 'Paired', 'Paired_r', 'Pastel1', 'Pastel1_r', 'Pastel2', 'Pastel2_r', 'PiYG', 'PiYG_r', 'PuBu', 'PuBuGn', 'PuBuGn_r', 'PuBu_r', 'PuOr', 'PuOr_r', 'PuRd', 'PuRd_r', 'Purples', 'Purples_r', 'RdBu', 'RdBu_r', 'RdGy', 'RdGy_r', 'RdPu', 'RdPu_r', 'RdYlBu', 'RdYlBu_r', 'RdYlGn', 'RdYlGn_r', 'Reds', 'Reds_r', 'Set1', 'Set1_r', 'Set2', 'Set2_r', 'Set3', 'Set3_r', 'Spectral', 'Spectral_r', 'Wistia', 'Wistia_r', 'YlGn', 'YlGnBu', 'YlGnBu_r', 'YlGn_r', 'YlOrBr', 'YlOrBr_r', 'YlOrRd', 'YlOrRd_r', 'afmhot', 'afmhot_r', 'autumn', 'autumn_r', 'binary', 'binary_r', 'bone', 'bone_r', 'brg', 'brg_r', 'bwr', 'bwr_r', 'cividis', 'cividis_r', 'cool', 'cool_r', 'coolwarm', 'coolwarm_r', 'copper', 'copper_r', 'cubehelix', 'cubehelix_r', 'flag', 'flag_r', 'gist_earth', 'gist_earth_r', 'gist_gray', 'gist_gray_r', 'gist_heat', 'gist_heat_r', 'gist_ncar', 'gist_ncar_r', 'gist_rainbow', 'gist_rainbow_r', 'gist_stern', 'gist_stern_r', 'gist_yarg', 'gist_yarg_r', 'gnuplot', 'gnuplot2', 'gnuplot2_r', 'gnuplot_r', 'gray', 'gray_r', 'hot', 'hot_r', 'hsv', 'hsv_r', 'inferno', 'inferno_r', 'jet', 'jet_r', 'magma', 'magma_r', 'nipy_spectral', 'nipy_spectral_r', 'ocean', 'ocean_r', 'pink', 'pink_r', 'plasma', 'plasma_r', 'prism', 'prism_r', 'rainbow', 'rainbow_r', 'seismic', 'seismic_r', 'spring', 'spring_r', 'summer', 'summer_r', 'tab10', 'tab10_r', 'tab20', 'tab20_r', 'tab20b', 'tab20b_r', 'tab20c', 'tab20c_r', 'terrain', 'terrain_r', 'twilight', 'twilight_r', 'twilight_shifted', 'twilight_shifted_r', 'viridis', 'viridis_r', 'winter', 'winter_r'] ''' # 필요한 칼럼만 추출 lower_math[[ 'kor' , 'eng' , 'mat' , 'bio']].plot(kind='bar', colormap='winter') plt.title("수학점수가 평균이하인 학생") plt.show()
origin_gdf[f'{exp}_td'] * 0.07 * 3 * 365) origin_gdf[f'{exp}_bus_em_pc'] = origin_gdf[ f'{exp}_bus_em'] / origin_gdf[f'population_{exp}'] origin_gdf[f'{exp}_total_em'] = origin_gdf[ f'{exp}_car_em'] + origin_gdf[f'{exp}_bus_em'] origin_gdf[f'{exp}_total_em_pc'] = origin_gdf[ f'{exp}_total_em'] / origin_gdf[f'population_{exp}'] origin_gdf = origin_gdf.to_crs(26910) return blocks_gdf pd.set_option('display.width', 700) fm.fontManager.ttflist += fm.createFontList( ['/Volumes/Samsung_T5/Fonts/roboto/Roboto-Light.ttf']) rc('font', family='Roboto', weight='light') name = 'Hillside Quadra' region = 'Capital Regional District, British Columbia' directory = f'/Volumes/Samsung_T5/Databases/Sandbox/{name}' experiments = ['e2', 'e3'] # ['e0', 'e1', 'e2', 'e3'] em_modes = ['car', 'bus', 'total'] exp_df = pd.DataFrame() macc = pd.DataFrame() tf_years = 20 GeoPackage = f'/Volumes/Samsung_T5/Databases/Capital Regional District, British Columbia.gpkg' for infra, values in { 'bus': 'Frequent transit', 'bike': 'Cycling lanes' }.items():