Exemple #1
0
def stacked_area_chart(
    data: dict,
    ax: mpl.axes,
    domains_in_focus: Optional[list] = None,
    percentage: bool = False,
    colormap: Optional[mpl.colors.LinearSegmentedColormap] = None,
    color_default: Optional[np.array] = None,
):
    """
    Parameters
    ----------
    data : Dictionary with a format {'x_axis_labels': {'y_axis_labels': y_values}}
    domains_in_focus :
    percentage :
    """
    x = list(data.keys())
    y = data_transformation(data, percentage)
    ylabels = get_ylabels(data)
    colors = utils.create_color_palette(
        ylabels,
        domains_in_focus,
        colormap,
        include_dof=True,
        return_dict=False,
    )
    ax.stackplot(
        x,
        y,
        colors=colors,
    )
    ax.set_xlim(np.min(x), np.max(x))
    ax.set_ylim(np.min(y), np.max(y))
    return ax
Exemple #2
0
 def makePowerSpectrum(
         self, freqs: np.array, power: np.array, sm_power: np.array,
         band_max_power: float, freq_at_band_max_power: float,
         max_freq: int = 50, theta_range: tuple = [6, 12],
         ax: matplotlib.axes = None, **kwargs) -> matplotlib.axes:
     # downsample frequencies and power
     freqs = freqs[0::50]
     power = power[0::50]
     sm_power = sm_power[0::50]
     if ax is None:
         fig = plt.figure()
         ax = fig.add_subplot(111)
     ax.plot(freqs, power, alpha=0.5, color=[0.8627, 0.8627, 0.8627])
     ax.plot(freqs, sm_power)
     ax.set_xlim(0, max_freq)
     ylim = [0, band_max_power / 0.8]
     if 'ylim' in kwargs:
         ylim = kwargs['ylim']
     ax.set_ylim(ylim)
     ax.set_ylabel('Power')
     ax.set_xlabel('Frequency')
     ax.text(
         x=theta_range[1] / 0.9, y=band_max_power,
         s=str(freq_at_band_max_power)[0:4], fontsize=20)
     from matplotlib.patches import Rectangle
     r = Rectangle((
         theta_range[0], 0), width=np.diff(theta_range)[0],
         height=np.diff(ax.get_ylim())[0], alpha=0.25, color='r', ec='none')
     ax.add_patch(r)
     return ax
Exemple #3
0
 def makeXCorr(self, spk_times: np.array, ax: matplotlib.axes = None,
               **kwargs) -> matplotlib.axes:
     # spk_times in samples provided in seconds but convert to
     # ms for a more display friendly scale
     spk_times = spk_times / 3e4 * 1000.
     S = SpikeCalcsGeneric(spk_times)
     y = S.xcorr(spk_times)
     if ax is None:
         fig = plt.figure()
         ax = fig.add_subplot(111)
     ax.hist(
             y[y != 0], bins=201, range=[-500, 500],
             color='k', histtype='stepfilled')
     ax.set_xlim(-500, 500)
     ax.set_xticks((-500, 0, 500))
     ax.set_xticklabels('')
     ax.tick_params(
         axis='both', which='both', left=False, right=False,
         bottom=False, top=False)
     ax.set_yticklabels('')
     ax.spines['right'].set_visible(False)
     ax.spines['top'].set_visible(False)
     ax.spines['left'].set_visible(False)
     ax.xaxis.set_ticks_position('bottom')
     return ax
def plot_openness_by_hour(data: list, period: dict, ax: Axes):
    """
    Plots the openness by hour from the raw data.

    :param data: Raw data
    :param period: Period over which to average the openness
    :param ax: Axes object in which to put the plot
    :return: None
    """
    num_hrs = 24

    # Get data
    hour_bins = get_openness_by_hour(data, period)

    # Plot bar chart
    ax.bar(range(num_hrs + 1), hour_bins)

    # Decorate the axes
    ax.yaxis.grid(True, which="both", linestyle="-.")
    ax.set_xlim(1, num_hrs)
    ax.set_xticks(range(num_hrs + 1))
    ax.set_xticklabels([f"{t:02d}" for t in ax.get_xticks()])
    ax.set_yticklabels([f"{o * 100:.1f}{percent()}" for o in ax.get_yticks()])
    ax.set_ylabel("Andel åpen")
    ax.set_xlabel("Tid på døgnet")
Exemple #5
0
def evolution_of_participation_1D(
    data: dict,
    ax: mpl.axes,
    entity_in_focus: Optional[list] = None,
    percentage: bool = False,
    colormap: mpl.colors.LinearSegmentedColormap = mpl.cm.jet,
) -> mpl.axes:
    """
    Parameters
    ----------
    data : Dictionary with a format {'x_axis_labels': {'y_axis_labels': y_values}}
    entity_in_focus :
    percentage :
    """
    x = list(data.keys())
    ylabels = stackedareachart.get_ylabels(data)
    y = stackedareachart.data_transformation(data, ylabels, percentage)
    colors = utils.create_color_palette(
        ylabels,
        entity_in_focus,
        colormap,
        include_dof=False,
        return_dict=True,
    )
    for iy, ylab in enumerate(ylabels):
        if ylab in entity_in_focus:
            ax.plot(
                x,
                y[iy, :],
                color="w",
                linewidth=4,
                zorder=1,
            )
            ax.plot(
                x,
                y[iy, :],
                color=colors[ylab],
                linewidth=3,
                zorder=1,
                label=ylab,
            )
        else:
            ax.plot(
                x,
                y[iy, :],
                color="grey",
                linewidth=1,
                zorder=0,
                alpha=0.2,
            )
    if np.isfinite(np.max(x)):
        ax.set_xlim(np.min(x), np.max(x))
    if np.isfinite(np.max(y)):
        ax.set_ylim(np.min(y), np.max(y))
    return ax
Exemple #6
0
    def makeSpeedVsRatePlot(
            self, spk_times: np.array, minSpeed: float = 0.0,
            maxSpeed: float = 40.0, sigma: float = 3.0,
            ax: matplotlib.axes = None, **kwargs) -> matplotlib.axes:
        """
        Plots the instantaneous firing rate of a cell against running speed
        Also outputs a couple of measures as with Kropff et al., 2015; the
        Pearsons correlation and the depth of modulation (dom) - see below for
        details
        """
        self.initialise()
        spk_times_in_pos_samples = self.getSpikePosIndices(spk_times)

        speed = np.ravel(self.speed)
        if np.nanmax(speed) < maxSpeed:
            maxSpeed = np.nanmax(speed)
        spd_bins = np.arange(minSpeed, maxSpeed, 1.0)
        # Construct the mask
        speed_filt = np.ma.MaskedArray(speed)
        speed_filt = np.ma.masked_where(speed_filt < minSpeed, speed_filt)
        speed_filt = np.ma.masked_where(speed_filt > maxSpeed, speed_filt)
        from ephysiopy.common.spikecalcs import SpikeCalcsGeneric

        x1 = spk_times_in_pos_samples
        S = SpikeCalcsGeneric(x1)
        spk_sm = S.smoothSpikePosCount(x1, self.xyTS.shape[0], sigma, None)
        spk_sm = np.ma.MaskedArray(spk_sm, mask=np.ma.getmask(speed_filt))
        spd_dig = np.digitize(speed_filt, spd_bins, right=True)
        mn_rate = np.array([np.ma.mean(
            spk_sm[spd_dig == i]) for i in range(0, len(spd_bins))])
        var = np.array([np.ma.std(
            spk_sm[spd_dig == i]) for i in range(0, len(spd_bins))])
        np.array([np.ma.sum(
            spk_sm[spd_dig == i]) for i in range(0, len(spd_bins))])
        fig = plt.figure()
        ax = fig.add_subplot(111)
        ax.errorbar(
            spd_bins, mn_rate * self.pos_sample_rate,
            yerr=var, color='k')
        ax.set_xlim(spd_bins[0], spd_bins[-1])
        plt.xticks([spd_bins[0], spd_bins[-1]], ['0', '{:.2g}'.format(
            spd_bins[-1])], fontweight='normal', size=6)
        plt.yticks([0, np.nanmax(
            mn_rate)*self.pos_sample_rate], ['0', '{:.2f}'.format(
                np.nanmax(mn_rate))], fontweight='normal', size=6)
        return ax
Exemple #7
0
def plot_chromatograph(
    seq: SeqRecord, region: Tuple[int, int] = None, ax: mpl.axes = None
) -> plt.axes:
    """Plot Sanger chromatograph.

    region: include both start and end (1-based)
    """
    if seq is None:
        return ax

    if region is None:
        # turn into 0 based for better indexing
        region_start, region_end = 0, len(seq)
    else:
        region_start = max(region[0], 0)
        region_end = min(region[1], len(seq) - 1)

    if ax is None:
        _, ax = plt.subplots(1, 1, figsize=(16, 6))

    _colors = defaultdict(
        lambda: "purple", {"A": "g", "C": "b", "G": "k", "T": "r"}
    )

    # Get signals
    peaks = seq.annotations["peak positions"]
    trace_x = seq.annotations["trace_x"]
    traces_y = [seq.annotations["channel " + str(i)] for i in range(1, 5)]
    bases = seq.annotations["channels"]

    xlim_left, xlim_right = peaks[region_start] - 1, peaks[region_end] + 0.5

    # subset peak and sequence
    # TODO: this might fix the bug
    peak_start = peaks[0]
    peak_zip = [
        (p, s)
        for i, (p, s) in enumerate(zip(peaks, seq))
        if region_start <= i <= region_end
    ]
    peaks, seq = list(zip(*peak_zip))

    # subset trace_x and traces_y together
    trace_zip = [
        (x + peak_start, *ys)
        for x, *ys in zip(trace_x, *traces_y)
        if xlim_left <= x <= xlim_right
    ]
    if not trace_zip:
        return ax
    trace_x, *traces_y = list(zip(*trace_zip))

    # Plot traces
    trmax = max(map(max, traces_y))
    for base in bases:
        trace_y = [1.0 * ci / trmax for ci in traces_y[bases.index(base)]]
        ax.plot(trace_x, trace_y, color=_colors[base], lw=2, label=base)
        ax.fill_between(
            trace_x, 0, trace_y, facecolor=_colors[base], alpha=0.125
        )

    # Plot bases at peak positions
    for i, peak in enumerate(peaks):
        #  LOGGER.debug(f"{i}, {peak}, {seq[i]}, {xlim_left + i}")
        ax.text(
            peak,
            -0.11,
            seq[i],
            color=_colors[seq[i]],
            va="center",
            ha="center",
            alpha=0.66,
            fontsize="x-large",
            fontweight="bold",
        )

    ax.set_ylim(bottom=-0.15, top=1.05)
    #  peaks[0] - max(2, 0.02 * (peaks[-1] - peaks[0])),
    #  right=peaks[-1] + max(2, 0.02 * (peaks[-1] - peaks[0])),
    ax.set_xlim(xlim_left + 0.5, xlim_right)
    ax.set_xticks(peaks)
    ax.set_xticklabels(list(range(region_start + 1, region_end + 2)))
    # hide y axis
    ax.set_yticklabels([])
    ax.get_yaxis().set_visible(False)
    # hide border
    ax.spines["left"].set_visible(False)
    ax.spines["right"].set_visible(False)
    ax.spines["top"].set_visible(False)
    # hide grid
    ax.grid(False)
    # set legend
    ax.legend(loc="upper left", bbox_to_anchor=(0.95, 0.99))
    return ax
Exemple #8
0
def evolution_of_participation_2D(
    xdata: dict,
    ydata: dict,
    ax: mpl.axes,
    entity_in_focus: Optional[list] = None,
    percentage: bool = False,
    colormap: mpl.colors.LinearSegmentedColormap = mpl.cm.jet,
) -> mpl.axes:
    """
    Parameters
    ----------
    data : Dictionary with a format {'x_axis_labels': {'y_axis_labels': y_values}}
    entity_in_focus :
    percentage :
    """
    # TODO: include time indication
    xlabels = stackedareachart.get_ylabels(xdata)
    ylabels = stackedareachart.get_ylabels(ydata)
    # ensure uniform order
    labels = list(set(xlabels + ylabels))
    xindx = [xlabels.index(lab) if lab in xlabels else None for lab in labels]
    xlabels = [xlabels[i] if i is not None else None for i in xindx]
    yindx = [ylabels.index(lab) if lab in ylabels else None for lab in labels]
    ylabels = [ylabels[i] if i is not None else None for i in yindx]
    # create arrays with format (# of ylabels, # of xlabels)
    x = stackedareachart.data_transformation(xdata, xlabels, percentage)
    y = stackedareachart.data_transformation(ydata, ylabels, percentage)
    colors = utils.create_color_palette(
        ylabels,
        entity_in_focus,
        colormap,
        include_dof=False,
        return_dict=True,
    )
    ax.plot([0, np.max(y)], [0, np.max(y)], c="k", linestyle="--", zorder=0)
    for i, lab in enumerate(labels):
        if lab in entity_in_focus:
            ax.plot(
                x[i, :],
                y[i, :],
                color="w",
                linewidth=4,
                zorder=1,
            )
            ax.plot(
                x[i, :],
                y[i, :],
                color=colors[lab],
                linewidth=3,
                zorder=1,
                label=lab,
            )
        else:
            ax.plot(
                x[i, :],
                y[i, :],
                color="grey",
                linewidth=1,
                zorder=0,
                alpha=0.2,
            )
    ax.set_xlim(np.min(x), np.max(x))
    ax.set_ylim(np.min(y), np.max(y))
    return ax
Exemple #9
0
def cohort_bar(cohort_averages: dict,
               cohort_data: dict,
               observable: str,
               yaxis_upper: int = None,
               ax: matplotlib.axes = None,
               labelsize: int = 12,
               ticksize: int = 10,
               legendsize: int = 8,
               markersize=15) -> None:
    """Plots either the V- or J-gene usages.

    Parameters
    ----------
    cohort_averages : dict
        Dictionary of averages and variations within a cohort for all severities.
    cohort_dict : dict
        Dictionary of all statistics of all individuals in a cohort for all severities.
    observable : str
        The quantity which is going to be plotted.
    yaxis_upper : int, optional
        Specifies the upper limit of the y-axis on the plot.
    ax : matplotlib.axes, optional
        Used to modify an already existing axes when creating a figure with a grid.
    labelsize : int, optional
        Size of axes labels.
    ticksize : int, optional
        Size of tick labels.
    legendsize : int, optional
        Specifies font size of strings in legend.

    Returns
    -------
    None
    """

    if ax is None:
        fig = plt.figure(dpi=300, figsize=(16, 4))
        ax = fig.add_subplot(111)

    #  Give the bars for each gene some space among each other.
    width = 1.0 / len(cohort_averages) - 0.02
    bars = []

    if 'Asymptomatic' in cohort_averages:
        ordering = ['Healthy', 'Mild', 'Moderate', 'Severe', 'Asymptomatic']
    else:
        ordering = sorted(cohort_averages.keys())

    #  Sort the genes by descending usage in the healthy cohort.
    if 'Briney/GRP' in cohort_averages:
        sorted_genes = [
            gene for _, gene in sorted(zip(
                cohort_averages['Briney/GRP'][observable][0],
                cohort_averages['Briney/GRP'][observable][-1]),
                                       key=lambda pair: pair[0],
                                       reverse=True)
        ]
    else:
        sorted_genes = [
            gene for _, gene in sorted(zip(
                cohort_averages['Healthy'][observable][0],
                cohort_averages['Healthy'][observable][-1]),
                                       key=lambda pair: pair[0],
                                       reverse=True)
        ]

    #  Because there are so many V genes, plot only those which have at least
    #  1% average usage in at least one cohort.
    if 'v' in observable:
        good_genes = []
        for gene in sorted_genes:
            bools = 0
            for severity in cohort_averages:
                idx = cohort_averages[severity][observable][-1].index(gene)
                value = cohort_averages[severity][observable][0][idx]
                bools += value >= 0.01
            if bools != 0:
                good_genes.append(gene)
    else:
        good_genes = sorted_genes

    xlabels = good_genes
    default_x = np.arange(0, len(good_genes), 1)
    xs, ys = [], []
    for i, severity in enumerate(ordering):
        x = default_x + width * i
        xs.append(x)
        indices = [
            cohort_averages[severity][observable][-1].index(gene)
            for gene in good_genes
        ]
        y = [cohort_averages[severity][observable][0][k] for k in indices]
        ys.append(y)

    if observable == 'v gene':
        ax.set_xlim(-0.3, xs[0][-1] + 1.0)
        if yaxis_upper is not None:
            ax.set_ylim(0, yaxis_upper)
        else:
            ax.set_ylim(0, 0.35)
    else:
        ax.set_xlim(-0.3, xs[0][-1] + 1.0)
        if yaxis_upper is not None:
            ax.set_ylim(0, yaxis_upper)
        else:
            ax.set_ylim(0, 0.55)

    #  Specifiy location of xticks as being in the middle of the grouping of bars.
    middle = np.mean(np.arange(0, len(cohort_averages)))
    middle_xticks = default_x + middle * width
    ax.set_xticks(middle_xticks)
    ax.set_xticklabels(xlabels, rotation=90, family='Arial')
    ax.set_ylabel('relative counts', fontname="Arial")

    #  Plot the bars.
    for i, severity in enumerate(ordering):
        bar = ax.bar(xs[i],
                     ys[i],
                     width,
                     color=colors[severity],
                     label=severity)
        for d in cohort_data[severity][observable]:
            #  Plot the full distributions of values to get a better sense
            #  of variation within cohorts.
            for gidx, rect in enumerate(bar):
                ax.scatter(xs[i][gidx],
                           d[good_genes[gidx]],
                           marker='.',
                           color=lightercolors[severity],
                           zorder=3,
                           s=markersize,
                           edgecolors='black',
                           linewidths=0.3)

    format_axes(ax,
                labelsize=labelsize,
                ticksize=ticksize,
                legendsize=legendsize)