def test_row_mac_03(self):
     det_before = m.det(self.mat_g)
     m.row_mul_add(self.mat_g, 0, 2, 0.5)
     det_after = m.det(self.mat_g)
     self.mat_exp = [[0, -0.5, -1.0], [0, 1, 2], [-2, -1, 0]]
     self.assertSequenceEqual(self.mat_g, self.mat_exp)
     self.assertEqual(det_before, det_after)
    def test_row_mac_02(self):
        det_before = m.det(self.mat_g)
        m.row_mul_add(self.mat_g, 1, 2, -1)
        det_after = m.det(self.mat_g)

        self.mat_exp = [[1, 0, -1], [2, 2, 2], [-2, -1, 0]]
        self.assertSequenceEqual(self.mat_g, self.mat_exp)
        self.assertEqual(det_before, det_after)
    def test_row_mac_01(self):
        det_before = m.det(self.mat_i)
        m.row_mul_add(self.mat_i, 1, 0, 0.5)
        det_after = m.det(self.mat_i)

        self.mat_exp = [
            [1, 0],
            [0.5, 1.0],
        ]
        self.assertSequenceEqual(self.mat_i, self.mat_exp)

        self.assertEqual(det_before, det_after)
Exemple #4
0
def matrix_inversion(eqs, varNames, api = False, ACCURACY = 4):
    ''' Matrix Inversion Method '''
    if len(eqs) != len(eqs[0])-1 or len(varNames) != len(eqs):
        raise Exception("Insufficient number of variables of equations.")
    var_count = len(varNames)
    delta_matrix = SquareMatrix([row[:-1] for row in eqs])
    delta = det(delta_matrix)

    if delta == 0:
        raise Exception("Δ = 0, Matrix Inversion failed!")

    const_matrix = Matrix([[row[-1]] for row in eqs])
    adjoint = adj(delta_matrix)
    res = (adjoint*const_matrix)*(1/delta)  # actual solving step
    adjointArray = adjoint.toList()
    resArray = [q[0] for q in res]
    result = [delta, adjointArray]
    for i in range(var_count):
        result.append((varNames[i], round(resArray[i], ACCURACY)))

    if api:
        return result
    else:
        print("Determinant = {0:.{1}f}".format(delta, ACCURACY))
        print("Adjoint = " + str(adjointArray))
        for name, value in result[2:]:
            print("{0} = {1:.{2}f}".format(name, value, ACCURACY))
Exemple #5
0
    def setUp(self):

        self.mj = pt.B
        self.mp = pt.A
        self.mt = pt.transp(pt.A)
        self.mh = pt.det(pt.A)
        self.mk = pt.matmult(pt.A, pt.B)
Exemple #6
0
def test(size):
    matrix = read_matrix(f'assets/input{size}.txt', size)
    exp = read_int(f'assets/output{size}.txt')
    act = det(matrix)
    if exp == act:
        print(f'Test passed. Answer: {act}')
    else:
        print(f'Test failed. Answer: {exp} Actual: {act}')
Exemple #7
0
def d_hill(ciphertext, key):
    # your code here
    if len(ciphertext) == 0:
        print('Error(d_hill): invalid ciphertext')
        return ''

    new_key = ''
    if len(key) > 4:
        new_key += key[:4]
    elif len(key) == 4:
        new_key += key
    else:
        new_key += key
        counter = 0
        while len(new_key) < 4:
            new_key += key[counter]
            counter += 1

    baseString = utilities_A4.get_lower()

    key_matrix = matrix.new_matrix(2, 2, 0)
    count = 0
    for i in range(2):
        for j in range(2):
            key_matrix[i][j] = baseString.index(new_key[count].lower())
            count += 1

    if mod.gcd(matrix.det(key_matrix), 26) != 1:
        print('Error(d_hill): key is not invertible')
        return ''

    inverse_key_matrix = matrix.inverse(key_matrix, 26)

    plaintext = ''
    non_alpha = utilities_A4.get_nonalpha(ciphertext)
    blocks = utilities_A4.text_to_blocks(
        utilities_A4.remove_nonalpha(ciphertext), 2)

    for block in blocks:
        block_m = matrix.new_matrix(2, 1, 0)
        block_m[0][0] = baseString.index(block[0].lower())
        block_m[1][0] = baseString.index(block[1].lower())

        result_m = matrix.matrix_mod(matrix.mul(inverse_key_matrix, block_m),
                                     26)

        plaintext += baseString[result_m[0][0]].lower()
        plaintext += baseString[result_m[1][0]].lower()

    plaintext = utilities_A4.insert_nonalpha(plaintext, non_alpha)
    while plaintext[-1] == 'q':
        plaintext = plaintext[:-1]

    return plaintext
Exemple #8
0
def cramer(eqs, varNames, api = False, ACCURACY = 4):
    ''' Cramer's Rule '''
    if len(eqs) != len(eqs[0])-1 or len(varNames) != len(eqs):
        raise Exception("Insufficient number of variables of equations.")
    var_count = len(varNames)
    delta_matrix = SquareMatrix([row[:-1] for row in eqs])
    delta = det(delta_matrix)

    if delta == 0:
        raise Exception("Δ = 0, Cramer's method failed!")

    result = []
    for i in range(var_count):
        local_matrix = SquareMatrix([row[:i] + [row[-1]] + row[i+1:-1] for row in eqs])
        result.append((varNames[i], round(det(local_matrix)/delta, ACCURACY)))

    if api:
        return result
    else:
        for name, value in result:
            print("{0} = {1:.{2}f}".format(name, value, ACCURACY))
Exemple #9
0
def test_q4():
    print("-------------------------------------------")
    print("Testing Q4: Matrix Library")
    filename = 'q4_solution.txt'
    outFile = open(filename, 'w')
    print()

    outFile.write('1- Testing is_vector:\n')
    outFile.write('is_vector({}) =  {}\n'.format([], matrix.is_vector([])))
    outFile.write('is_vector({}) =  {}\n'.format([10], matrix.is_vector([10])))
    outFile.write('is_vector({}) =  {}\n'.format([10, 20],
                                                 matrix.is_vector([10, 20])))
    outFile.write('is_vector({}) =  {}\n'.format(10, matrix.is_vector(10)))
    outFile.write('is_vector({}) =  {}\n'.format([3, 4.5],
                                                 matrix.is_vector([3, 4.5])))
    outFile.write('is_vector({}) =  {}\n'.format([[]], matrix.is_vector([[]])))
    outFile.write('is_vector({}) =  {}\n'.format([[1, 2], [3, 4]],
                                                 matrix.is_vector([[1, 2],
                                                                   [3, 4]])))
    outFile.write('\n')

    outFile.write('2- Testing is_matrix')
    A = []
    outFile.write('is_matrix({}) =  {}\n'.format(A, matrix.is_matrix(A)))
    A = [5]
    outFile.write('is_matrix({}) =  {}\n'.format(A, matrix.is_matrix(A)))
    A = [[1, 2], [3, 4]]
    outFile.write('is_matrix({}) =  {}\n'.format(A, matrix.is_matrix(A)))
    A = [[1], [2], [3]]
    outFile.write('is_matrix({}) =  {}\n'.format(A, matrix.is_matrix(A)))
    A = [[1, 2, 3], [4, 5, 6]]
    outFile.write('is_matrix({}) =  {}\n'.format(A, matrix.is_matrix(A)))
    A = 5
    outFile.write('is_matrix({}) =  {}\n'.format(A, matrix.is_matrix(A)))
    A = [5.5]
    outFile.write('is_matrix({}) =  {}\n'.format(A, matrix.is_matrix(A)))
    A = [[1, 2, 3], [4, 5]]
    outFile.write('is_matrix({}) =  {}\n'.format(A, matrix.is_matrix(A)))
    outFile.write('\n')

    print('3- Testing print_matrix')
    A = []
    print('print_matrix({})='.format(A))
    matrix.print_matrix(A)
    A = [10, 20, 30]
    print('print_matrix({})='.format(A))
    matrix.print_matrix(A)
    A = [[10], [20], [30]]
    print('print_matrix({})='.format(A))
    matrix.print_matrix(A)
    A = [[10, 20, 30], [40, 50, 60], [70, 80, 10]]
    print('print_matrix({})='.format(A))
    matrix.print_matrix(A)
    A = [[10, 20, 30], [40, 50, 60], [70, 80]]
    print('print_matrix({})='.format(A))
    print(matrix.print_matrix(A))
    print()

    outFile.write('4/5/6- Testing size functions\n')
    A = []
    outFile.write('get_rowCount({})    =  {}\n'.format(A,
                                                       matrix.get_rowCount(A)))
    outFile.write('get_ColumnCount({}) =  {}\n'.format(
        A, matrix.get_columnCount(A)))
    outFile.write('get_size({})        =  {}\n'.format(A, matrix.get_size(A)))
    outFile.write('\n')

    A = [1, 2, 3]
    outFile.write('get_rowCount({})    =  {}\n'.format(A,
                                                       matrix.get_rowCount(A)))
    outFile.write('get_ColumnCount({}) =  {}\n'.format(
        A, matrix.get_columnCount(A)))
    outFile.write('get_size({})        =  {}\n'.format(A, matrix.get_size(A)))
    outFile.write('\n')

    A = [[1, 2], [3, 4], [5, 6]]
    outFile.write('get_rowCount({})    =  {}\n'.format(A,
                                                       matrix.get_rowCount(A)))
    outFile.write('get_ColumnCount({}) =  {}\n'.format(
        A, matrix.get_columnCount(A)))
    outFile.write('get_size({})        =  {}\n'.format(A, matrix.get_size(A)))
    outFile.write('\n')

    A = [[1, 2], [3]]
    outFile.write('get_rowCount({})    =  {}\n'.format(A,
                                                       matrix.get_rowCount(A)))
    outFile.write('get_ColumnCount({}) =  {}\n'.format(
        A, matrix.get_columnCount(A)))
    outFile.write('get_size({})        =  {}\n'.format(A, matrix.get_size(A)))
    outFile.write('\n')

    outFile.write('7- Testing is_square\n')
    A = []
    outFile.write('is_square({})    =  {}\n'.format(A, matrix.is_square(A)))
    A = [5]
    outFile.write('is_square({})    =  {}\n'.format(A, matrix.is_square(A)))
    A = [5, 6]
    outFile.write('is_square({})    =  {}\n'.format(A, matrix.is_square(A)))
    A = [[1, 2], [3, 4]]
    outFile.write('is_square({})    =  {}\n'.format(A, matrix.is_square(A)))
    A = [5.5]
    outFile.write('is_square({})    =  {}\n'.format(A, matrix.is_square(A)))
    outFile.write('\n')

    outFile.write('8/9/10- Testing getter functions\n')
    A = [[1, 2, 3], [4, 5, 6]]
    i = 0
    j = 1
    outFile.write('get_row({},{})    = {}\n'.format(A, i, matrix.get_row(A,
                                                                         i)))
    outFile.write('get_Column({},{}) = {}\n'.format(A, j,
                                                    matrix.get_column(A, j)))
    outFile.write('get_element({},{},{}) = {}\n'.format(
        A, i, j, matrix.get_element(A, i, j)))
    outFile.write('\n')

    i = 2
    j = 2
    outFile.write('get_row({},{})    = {}\n'.format(A, i, matrix.get_row(A,
                                                                         i)))
    outFile.write('get_Column({},{}) = {}\n'.format(A, j,
                                                    matrix.get_column(A, j)))
    outFile.write('get_element({},{},{}) = {}\n'.format(
        A, i, j, matrix.get_element(A, i, j)))
    outFile.write('\n')

    i = 1
    j = 3
    outFile.write('get_row({},{})    = {}\n'.format(A, i, matrix.get_row(A,
                                                                         i)))
    outFile.write('get_Column({},{}) = {}\n'.format(A, j,
                                                    matrix.get_column(A, j)))
    outFile.write('get_element({},{},{}) = {}\n'.format(
        A, i, j, matrix.get_element(A, i, j)))
    outFile.write('\n')

    A = [[1, 2, 3], []]
    outFile.write('get_row({},{})    = {}\n'.format(A, i, matrix.get_row(A,
                                                                         i)))
    outFile.write('get_Column({},{}) = {}\n'.format(A, j,
                                                    matrix.get_column(A, j)))
    outFile.write('get_element({},{},{}) = {}\n'.format(
        A, i, j, matrix.get_element(A, i, j)))
    outFile.write('\n')

    outFile.write('11- Testing new_matrix\n')
    r = 0
    c = 0
    pad = 0
    outFile.write('new_matrix({},{},{})=\n{}\n'.format(
        r, c, pad, matrix.new_matrix(r, c, pad)))
    c = 1
    outFile.write('new_matrix({},{},{})=\n{}\n'.format(
        r, c, pad, matrix.new_matrix(r, c, pad)))
    r = 1
    outFile.write('new_matrix({},{},{})=\n{}\n'.format(
        r, c, pad, matrix.new_matrix(r, c, pad)))
    r = 2
    c = 1
    outFile.write('new_matrix({},{},{})=\n{}\n'.format(
        r, c, pad, matrix.new_matrix(r, c, pad)))
    c = 2
    r = 1
    outFile.write('new_matrix({},{},{})=\n{}\n'.format(
        r, c, pad, matrix.new_matrix(r, c, pad)))
    c = 3
    r = 3
    outFile.write('new_matrix({},{},{})=\n{}\n'.format(
        r, c, pad, matrix.new_matrix(r, c, pad)))
    r = -1
    outFile.write('new_matrix({},{},{})=\n{}\n'.format(
        r, c, pad, matrix.new_matrix(r, c, pad)))
    r = 3
    c = -5
    outFile.write('new_matrix({},{},{})=\n{}\n'.format(
        r, c, pad, matrix.new_matrix(r, c, pad)))
    c = 5
    pad = 3.5
    outFile.write('new_matrix({},{},{})=\n{}\n'.format(
        r, c, pad, matrix.new_matrix(r, c, pad)))
    outFile.write('\n')

    outFile.write('12- Testing get_I\n')
    size = -1
    outFile.write('get_I({})    = {}\n'.format(size, matrix.get_I(size)))
    size = 0
    outFile.write('get_I({})    =  {}\n'.format(size, matrix.get_I(size)))
    size = 1
    outFile.write('get_I({})    =  {}\n'.format(size, matrix.get_I(size)))
    size = 2
    outFile.write('get_I({})    =  {}\n'.format(size, matrix.get_I(size)))
    size = 3
    outFile.write('get_I({})    =  {}\n'.format(size, matrix.get_I(size)))
    outFile.write('\n')

    outFile.write('13- Testing is_identity\n')
    A = [1]
    outFile.write('is_identity({}) = {}\n'.format(A, matrix.is_identity(A)))
    A = matrix.get_I(3)
    outFile.write('is_identity({}) = {}\n'.format(A, matrix.is_identity(A)))
    A = [[1, 0], [1, 1]]
    outFile.write('is_identity({}) = {}\n'.format(A, matrix.is_identity(A)))
    A = [[1, 0], [0, 1, 0]]
    outFile.write('is_identity({}) = {}\n'.format(A, matrix.is_identity(A)))
    outFile.write('\n')

    outFile.write('14- Testing scalar_mul\n')
    A = [[1, 2], [3, 4]]
    c = 10
    outFile.write('scalar_mul({},{}) = {}\n'.format(A, c,
                                                    matrix.scalar_mul(c, A)))
    A = [1, 2, 3, 4]
    outFile.write('scalar_mul({},{}) = {}\n'.format(A, c,
                                                    matrix.scalar_mul(c, A)))
    A = []
    outFile.write('scalar_mul({},{}) = {}\n'.format(A, c,
                                                    matrix.scalar_mul(c, A)))
    A = [1, 2, 3, [4]]
    outFile.write('scalar_mul({},{}) = {}\n'.format(A, c,
                                                    matrix.scalar_mul(c, A)))
    A = [[1, 2], [3, 4]]
    c = [10]
    outFile.write('scalar_mul({},{}) = {}\n'.format(A, c,
                                                    matrix.scalar_mul(c, A)))
    outFile.write('\n')

    outFile.write('15- Testing mul\n')
    A = [[1, 2], [3, 4]]
    B = [[10, 20], [30, 40]]
    outFile.write('mul({},{})=\n{}\n'.format(A, c, matrix.mul(A, B)))
    A = [[1, 2, 3], [5, 6, 7]]
    B = [[10, 20], [30, 40], [50, 60]]
    outFile.write('mul({},{})= {}\n'.format(A, c, matrix.mul(A, B)))
    A = [5]
    B = [10]
    outFile.write('mul({},{})= {}\n'.format(A, B, matrix.mul(A, B)))
    A = [0, 1, 2]
    B = [[0], [1], [2]]
    outFile.write('mul({},{})= {}\n'.format(A, B, matrix.mul(A, B)))
    A = [[0], 1]
    B = [1, 0]
    outFile.write('mul({},{})= {}\n'.format(A, B, matrix.mul(A, B)))
    A = [1, 0]
    B = [[0], 1]
    outFile.write('mul({},{})= {}\n'.format(A, B, matrix.mul(A, B)))
    A = [[1, 2, 3], [5, 6, 7]]
    B = [[10, 20], [30, 40], [50, 60]]
    outFile.write('mul({},{})= {}\n'.format(B, A, matrix.mul(B, A)))
    A = [[1, 2, 3], [5, 6, 7]]
    B = [[10, 20], [30, 40]]
    outFile.write('mul({},{})= {}\n'.format(A, B, matrix.mul(A, B)))
    outFile.write('\n')

    outFile.write('16- Testing matrix_mod\n')
    A = [[1, 2], [3, 4]]
    m = 2
    outFile.write('matrix_mod({},{})= {}\n'.format(A, m,
                                                   matrix.matrix_mod(A, m)))
    A = [1, 2, 3, 4]
    m = 2
    outFile.write('matrix_mod({},{})= {}\n'.format(A, m,
                                                   matrix.matrix_mod(A, m)))
    A = [[3], [5]]
    m = 3
    outFile.write('matrix_mod({},{})= {}\n'.format(A, m,
                                                   matrix.matrix_mod(A, m)))
    A = [[3], [5]]
    m = 0
    outFile.write('matrix_mod({},{})= {}\n'.format(A, m,
                                                   matrix.matrix_mod(A, m)))
    A = [3, [5]]
    m = 6
    outFile.write('matrix_mod({},{})= {}\n'.format(A, m,
                                                   matrix.matrix_mod(A, m)))
    outFile.write('\n')

    outFile.write('17- Testing det\n')
    A = [[1, 2], [3, 4]]
    outFile.write('det({})= {}\n'.format(A, matrix.det(A)))
    A = [10]
    outFile.write('det({})= {}\n'.format(A, matrix.det(A)))
    A = [[1, 1, 1], [2, 2, 2], [3, 3, 3]]
    outFile.write('det({})= {}\n'.format(A, matrix.det(A)))
    A = [[1, 1, 1], [2, 2]]
    outFile.write('det({})= {}\n'.format(A, matrix.det(A)))
    outFile.write('\n')

    outFile.write('18- Testing inverse\n')
    A = [[1, 4], [8, 11]]
    m = 26
    outFile.write('inverse({},{})= {}\n'.format(A, m, matrix.inverse(A, m)))
    A = [[4, 3], [1, 1]]
    m = 5
    outFile.write('inverse({},{})= {}\n'.format(A, m, matrix.inverse(A, m)))
    A = [[1, 4], [8, 10]]
    m = 26
    outFile.write('inverse({},{})= {}\n'.format(A, m, matrix.inverse(A, m)))
    A = [1, 4, 8, 10]
    m = 15
    outFile.write('inverse({},{})= {}\n'.format(A, m, matrix.inverse(A, m)))
    A = [[4, 3], [1, 1]]
    m = -5
    outFile.write('inverse({},{})= {}\n'.format(A, m, matrix.inverse(A, m)))
    A = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
    m = 7
    outFile.write('inverse({},{})= {}\n'.format(A, m, matrix.inverse(A, m)))
    A = [[1, 2, 3], [4, 5]]
    m = 7
    outFile.write('inverse({},{})= {}\n'.format(A, m, matrix.inverse(A, m)))

    outFile.close()
    print('Comparing q4_solution with q4_sample:')
    print(utilities_A4.compare_files('q4_solution.txt', 'q4_sample.txt'))
    print()
    print("-------------------------------------------")
Exemple #10
0
    # Словарь функций
    dictionary = {
        '1':
        matrix.add(data['first_matrix_dimensions'],
                   data['second_matrix_dimensions'], data['first_matrix'],
                   data['second_matrix']),
        '2':
        matrix.sub(data['first_matrix_dimensions'],
                   data['second_matrix_dimensions'], data['first_matrix'],
                   data['second_matrix']),
        '3':
        matrix.mult(data['first_matrix_dimensions'],
                    data['second_matrix_dimensions'], data['first_matrix'],
                    data['second_matrix']),
        '4':
        matrix.det(data['number'], data['first_matrix'])
    }

    # Вызов функции из словоря по списку входных данных
    for param in calls:
        if isinstance(dictionary[param],
                      list) and not (isinstance(dictionary[param][0], int) or
                                     isinstance(dictionary[param][0], float)):
            for i in range(len(dictionary[param])):
                for j in range(len(dictionary[param][i])):
                    print(dictionary[param][i][j], '', end='')
                print()
        elif isinstance(dictionary[param],
                        list) and (isinstance(dictionary[param][0], int)
                                   or isinstance(dictionary[param][0], float)):
            for i in range(len(dictionary[param])):
 def test_adj01(self):
     self.mat_r = m.adjugate_matrix(self.mat_d)
     d = m.det(self.mat_d)
     self.mat_exp = [[d, 0, 0], [0, d, 0], [0, 0, d]]
     self.assertEqual(m.mul_mat(self.mat_r, self.mat_d), self.mat_exp)
     self.assertEqual(m.mul_mat(self.mat_d, self.mat_r), self.mat_exp)
 def test_det03(self):
     d = m.det(self.mat_a)
     e = self.mat_a[0][0] * self.mat_a[1][1] - self.mat_a[0][
         1] * self.mat_a[1][0]
     self.assertEqual(d, e)
 def test_det02(self):
     d = m.det(self.mat_d)
     self.assertEqual(d, 24.0)
 def test_det01(self):
     d = m.det(self.mat_i)
     self.assertEqual(d, 1.0)