Exemple #1
0
def nextTimeStep(
    Q, epsilon
):  #returns the next timestep and a 0 to continue loop, or the same value and a 1 to stop the loop
    n = Q.shape[0]
    NextQ = np.zeros((n, n))
    for i in range(n):
        for j in range(n):
            NextQ[i, j] = expectation(
                Q, i, j)  #as defined in paper, see above functions
    NextQN = matrixFunctions2d.normalize2dMatrix(NextQ)
    #Cannot be weighted adjust, investigate why later   NextQ = matrixFunctions2d.weightedAdjustment2d(NextQN)
    NextQ = matrixFunctions2d.diagonalAdjustment2d(NextQN)

    #   print NextQ
    dist = frobenius(NextQ, Q)
    if (dist < epsilon):
        return Q, dist, 1
    else:
        return NextQ, dist, 0
Exemple #2
0
                z = hops[index - 1]
                switch = -1
        if (iters > maxIters):
            value = 0
        iters += 1


#      print index, value, iters, x, y

    return hops[index]

mat = matrixFunctions2d.read2dMatrix(sys.argv[1])
mat = matrixFunctions2d.normalize2dMatrix(mat, 0)
P = np.copy(mat)  #initial Probability Matrix
mat = logm(mat)
Q = matrixFunctions2d.diagonalAdjustment2d(mat, 0)  #this is our Qnaught


#Q = matrixFunctions2d.weightedAdjustment2d(log)
def func(x, i, j, Q, P):  #x is exp(Q(q_{i,j}))
    #   P = expm(Q)
    Q_e = expm(Q)
    n = Q.shape[0]
    copy = np.copy(Q)
    #diff = np.real(Q[i,j] - x)#initially zero for first iteration, should change as x changes
    diff = np.real(
        Q_e[i, j] -
        P[i,
          j])  #initially zero for first iteration, should change as x changes
    for k in range(n):
        for u in range(n):
print "Opened %s" % sys.argv[1]

out = open(sys.argv[2], "w+")
print "Output will be written to %s" % sys.argv[2]

if (k == 0):
    print "Currently Configured to sum along the COLUMN"
else:
    print "Currently Configured to sum along the ROW"

n = matrix.shape[0]
print "Normalizing Input Matrix along ",
if (k == 0):
    print "each column"
else:
    print "each row"

Norm = matrixFunctions2d.normalize2dMatrix(matrix, k)
#print Norm
logd = logm(Norm)
print logd
diag = matrixFunctions2d.diagonalAdjustment2d(logd)

#print free energy to f.txt
matrixFunctions2d.printDetailedBalanceftxt(diag,
                                           "diagonal_db_%s.dat" % sys.argv[1])
matrixFunctions2d.write2dMatrix(diag, "diagonal_Matrix_%s.dat" % sys.argv[1])
#detailed balance

#matrixFunctions2d.print2dMatrix(diag)