def test_find_skip_locations(): a = np.array([1, np.inf, np.nan, 4, 5, 6, 7, 8]) desired = np.array([True, True, True, False, False]) actual = core.find_skip_locations(a, 5, 4) np.testing.assert_equal(actual, desired)
def stomp(ts, window_size, query=None, n_jobs=1): """ Computes matrix profiles for a single dimensional time series using the parallelized STOMP algorithm (by default). Ray or Python's multiprocessing library may be used. When you have initialized Ray on your machine, it takes priority over using Python's multiprocessing. Parameters ---------- ts : array_like The time series to compute the matrix profile for. window_size: int The size of the window to compute the matrix profile over. query : array_like Optionally, a query can be provided to perform a similarity join. n_jobs : int, Default = 1 Number of cpu cores to use. Returns ------- dict : profile A MatrixProfile data structure. >>> { >>> 'mp': The matrix profile, >>> 'pi': The matrix profile 1NN indices, >>> 'rmp': The right matrix profile, >>> 'rpi': The right matrix profile 1NN indices, >>> 'lmp': The left matrix profile, >>> 'lpi': The left matrix profile 1NN indices, >>> 'metric': The distance metric computed for the mp, >>> 'w': The window size used to compute the matrix profile, >>> 'ez': The exclusion zone used, >>> 'join': Flag indicating if a similarity join was computed, >>> 'sample_pct': Percentage of samples used in computing the MP, >>> 'data': { >>> 'ts': Time series data, >>> 'query': Query data if supplied >>> } >>> 'class': "MatrixProfile" >>> 'algorithm': "stomp_parallel" >>> } Raises ------ ValueError If window_size < 4. If window_size > query length / 2. If ts is not a list or np.array. If query is not a list or np.array. If ts or query is not one dimensional. """ is_join = core.is_similarity_join(ts, query) if not is_join: query = ts # data conversion to np.array ts = core.to_np_array(ts) query = core.to_np_array(query) if window_size < 4: error = "window size must be at least 4." raise ValueError(error) if window_size > len(query) / 2: error = "Time series is too short relative to desired window size" raise ValueError(error) # multiprocessing or single threaded approach if n_jobs == 1: pass else: n_jobs = core.valid_n_jobs(n_jobs) # precompute some common values - profile length, query length etc. profile_length = core.get_profile_length(ts, query, window_size) data_length = len(ts) query_length = len(query) num_queries = query_length - window_size + 1 exclusion_zone = int(np.ceil(window_size / 2.0)) # do not use exclusion zone for join if is_join: exclusion_zone = 0 # find skip locations, clean up nan and inf in the ts and query skip_locs = core.find_skip_locations(ts, profile_length, window_size) ts = core.clean_nan_inf(ts) query = core.clean_nan_inf(query) # initialize matrices matrix_profile = np.full(profile_length, np.inf) profile_index = np.full(profile_length, 0) # compute left and right matrix profile when similarity join does not happen left_matrix_profile = None right_matrix_profile = None left_profile_index = None right_profile_index = None if not is_join: left_matrix_profile = np.copy(matrix_profile) right_matrix_profile = np.copy(matrix_profile) left_profile_index = np.copy(profile_index) right_profile_index = np.copy(profile_index) # precompute some statistics on ts data_mu, data_sig = core.moving_avg_std(ts, window_size) first_window = query[0:window_size] first_product = core.fft_convolve(ts, first_window) batch_windows = [] results = [] # batch compute with multiprocessing args = [] for start, end in core.generate_batch_jobs(num_queries, n_jobs): args.append((start, end, ts, query, window_size, data_length, profile_length, exclusion_zone, is_join, data_mu, data_sig, first_product, skip_locs)) batch_windows.append((start, end)) # we are running single threaded stomp - no need to initialize any # parallel environments. if n_jobs == 1 or len(args) == 1: results.append(_batch_compute(args[0])) else: # parallelize with core.mp_pool()(n_jobs) as pool: results = pool.map(_batch_compute, args) # now we combine the batch results if len(results) == 1: result = results[0] matrix_profile = result['mp'] profile_index = result['pi'] left_matrix_profile = result['lmp'] left_profile_index = result['lpi'] right_matrix_profile = result['rmp'] right_profile_index = result['rpi'] else: for index, result in enumerate(results): start = batch_windows[index][0] end = batch_windows[index][1] # update the matrix profile indices = result['mp'] < matrix_profile matrix_profile[indices] = result['mp'][indices] profile_index[indices] = result['pi'][indices] # update the left and right matrix profiles if not is_join: indices = result['lmp'] < left_matrix_profile left_matrix_profile[indices] = result['lmp'][indices] left_profile_index[indices] = result['lpi'][indices] indices = result['rmp'] < right_matrix_profile right_matrix_profile[indices] = result['rmp'][indices] right_profile_index[indices] = result['rpi'][indices] return { 'mp': matrix_profile, 'pi': profile_index, 'rmp': right_matrix_profile, 'rpi': right_profile_index, 'lmp': left_matrix_profile, 'lpi': left_profile_index, 'metric': 'euclidean', 'w': window_size, 'ez': exclusion_zone, 'join': is_join, 'sample_pct': 1, 'data': { 'ts': ts, 'query': query }, 'class': "MatrixProfile", 'algorithm': "stomp" }