Exemple #1
0
 def __init__(self, ibrav = 1,a = 1. ,b = 1.,c = 1.,
         cBC = 0.,cAC = 0. ,cAB = 0., base = None, lattice = None, qeInput = None ):
     self.formatString = '%# .8f %# .8f %# .8f'
     self._qeInput = qeInput
     #self._qeInput = None
     self._type = 'celldm'
     # Lattice container class, used for lattice operations
     self.__primitiveLattice = Lattice()
     # Lattice vectors in bohr or angstrom:
     self._base = None
     # initialize the lattice if there is enough information 
     if ibrav > 0 and base != None:
         self.setLatticeFromQEVectors(ibrav, base)
     else:
         self.setLattice(ibrav ,a ,b , c, cBC ,cAC ,cAB, base)
     # copy constructor:
     if isinstance(ibrav, QELattice) or lattice != None:
         if lattice.ibrav > 0:
             self.setLattice( ibrav = lattice.ibrav, a = lattice.a, \
                                      b = lattice.b, c = lattice.c,
                                      cBC = lattice.cBC, cAC = lattice.cAC,\
                                      cAB = lattice.cAB)
         else:
             self.setLattice( ibrav = lattice.ibrav, a = lattice.a, \
                                                       base = lattice.base )            
         # copy input:
         from pwinput import PWInput        
         self._qeInput = PWInput()
         self._qeInput.readString( lattice._qeInput.toString() )
Exemple #2
0
    def setUp(self):
        #        at1 = Atom('C', [0.333333333333333, 0.666666666666667, 0])
        #        at2 = Atom('C', [0.666666666666667, 0.333333333333333, 0])
        at1 = Atom('C', [0, 0, 0])
        at2 = Atom('C', [1, 1, 1])
        self.stru = Structure([at1, at2],
                              lattice=Lattice(1, 1, 1, 90, 90, 120))

        ciffile = os.path.join(testdata_dir, 'PbTe.cif')
        self.stru2 = Structure()
        self.stru2.read(ciffile)

        ciffile = os.path.join(testdata_dir, 'graphite.cif')
        self.stru3 = Structure()
        self.stru3.read(ciffile)

        at1 = Atom('Al', [0.0, 0.0, 0.0])
        at2 = Atom('Al', [0.0, 0.5, 0.5])
        at3 = Atom('Al', [0.5, 0.0, 0.5])
        at4 = Atom('Al', [0.5, 0.5, 0.0])
        self.stru4 = Structure([at1, at2, at3, at4],
                               lattice=Lattice(4.05, 4.05, 4.05, 90, 90, 90),
                               sgid=225)

        self.places = 12
 def test_NaI(self):
     """check supercell expansion for Al.
     """       
     at1 = Atom('Na', [0.0, 0.0, 0.0])
     at2 = Atom('Na', [0.0, 0.5, 0.5])
     at3 = Atom('Na', [0.5, 0.0, 0.5])
     at4 = Atom('Na', [0.5, 0.5, 0.0])
     at5 = Atom('I', [0.5, 0.5, 0.5])
     at6 = Atom('I', [0.0, 0.0, 0.5])
     at7 = Atom('I', [0.0, 0.5, 0.0])
     at8 = Atom('I', [0.5, 0.0, 0.0])
     naI = Structure( [ at1, at2, at3, at4, at5, at6, at7, at8], 
                            lattice = Lattice(6.482, 6.482, 6.482, 90, 90, 90),
                            sgid = 225 )
     lines = []
     for sym,pos in zip(naI.symbols, naI.xyz_cartn):
         lines.append( sym+' %f %f %f' % tuple(pos) )
     lines.append('\n')
     naI_sup = supercell(naI, (2,2,2))
     for sym,pos in zip(naI_sup.symbols, naI_sup.xyz_cartn):
         lines.append(sym+' %f %f %f' % tuple(pos))
     expected = open('expected-test_NaI-TestSuperCell').readlines()
     self.assertEqual(len(lines), len(expected))
     for l1, l2 in zip(lines, expected):
         self.assertEqual(l1.strip(), l2.strip())
     return
Exemple #4
0
 def setUp(self):
     #        at1 = Atom('C', [0.333333333333333, 0.666666666666667, 0])
     #        at2 = Atom('C', [0.666666666666667, 0.333333333333333, 0])
     at1 = Atom('C', [0, 0, 0])
     at2 = Atom('C', [1, 1, 1])
     self.stru = Structure([at1, at2],
                           lattice=Lattice(1, 1, 1, 90, 90, 120))
     self.places = 12
Exemple #5
0
    def testGetChemicalFormula(self):
        at1 = Atom('C', [0.333333333333333, 0.666666666666667, 0])
        at2 = Atom('C', [0.666666666666667, 0.333333333333333, 0])
        #at3 = Atom('H', [0, 0, 0])

        stru = Structure([at1, at2],
                         lattice=Lattice(3.8, 3.8, 5.6, 90, 90, 120))
        print 'formula: ', stru.getChemicalFormula()
        return
 def test_placeInLattice(self):
     """check Structure.placeInLattice() -- conversion of coordinates
     """
     stru = self.stru
     new_lattice = Lattice(.5, .5, .5, 90, 90, 60)
     stru.placeInLattice(new_lattice)
     a0 = stru[0]
     self.assertListAlmostEqual(a0.xyz, 3*[0.0])
     a1 = stru[1]
     self.assertListAlmostEqual(a1.xyz, [2.0, 0.0, 2.0])
 def testChemicalFormulaPositionsSymbols(self):
     at1 = Atom('C', [0.333333333333333, 0.666666666666667, 0])
     at2 = Atom('C', [0.666666666666667, 0.333333333333333, 0])
     #at3 = Atom('H', [0, 0, 0])
     
     stru = Structure( [ at1, at2], lattice=Lattice(3.8, 3.8, 5.6, 90, 90, 120) )
     assert stru.getChemicalFormula()=='C_2'
     #self.assertListAlmostEqual(stru.xyz, [[0.33333333333333298, 0.66666666666666696, 0.0], [0.66666666666666696, 0.33333333333333298, 0.0]])
     #self.assertListAlmostEqual(stru.xyz_cartn,[[1.0969655114602876, 1.9000000000000017, 0.0], [2.1939310229205784, -2.0020877317117325e-15, 0.0]])
     #self.assertListAlmostEqual(stru.symbols, ['C', 'C'])
     #print "here's the lattice", stru.lattice.base
     return
 def test1(self):
     'Structure: property "primitive_unitcell"'
     lattice = Lattice(a=2, b=2, c=2, alpha=90, beta=90, gamma=90)
     atoms = [
         Atom('Ni', (0, 0, 0)),
         Atom('Ni', (0, 0.5, 0.5)),
         Atom('Ni', (0.5, 0, 0.5)),
         Atom('Ni', (0.5, 0.5, 0)),
     ]
     struct = Structure(lattice=lattice, atoms=atoms, sgid=225)
     print struct.primitive_unitcell
     return
 def test2a(self):
     'Structure: methood "symConsistent"'
     lattice = Lattice(a=2, b=2, c=2, alpha=90, beta=90, gamma=90)
     atoms = [
         Atom('Ni', (0, 0, 0)),
         Atom('Ni', (0, 0.5, 0.5)),
         Atom('Ni', (0.5, 0, 0.5)),
         Atom('Ni', (0.5, 0.5, 0)),
     ]
     struct = Structure(lattice=lattice, atoms=atoms, sgid=225)
     verdict, pos, op = struct.symConsistent()
     self.assert_(verdict)
     return
 def test_al_supercell(self):
     """check supercell expansion for Al.
     """       
     at1 = Atom('Al', [0.0, 0.0, 0.0])
     at2 = Atom('Al', [0.0, 0.5, 0.5])
     at3 = Atom('Al', [0.5, 0.0, 0.5])
     at4 = Atom('Al', [0.5, 0.5, 0.0])
     self.stru4 = Structure( [ at1, at2, at3, at4], 
                            lattice=Lattice(4.05, 4.05, 4.05, 90, 90, 90),
                            sgid = 225 )
     al_sup = supercell(self.stru4, (3,3,3))
     #print al_sup
     return
Exemple #11
0
def __restoreFromInventory__(self, inventory):
    atoms = []
    from matter.Atom import Atom
    from matter.Lattice import Lattice
    for symbol, pos in zip(inventory.atom_symbols, inventory.atom_positions):
        atoms.append(Atom(symbol, pos))
    self.__init__(
        atoms=atoms,
        lattice=Lattice(base=inventory.lattice_base),
        sgid=inventory.spacegroup_num,
        description=inventory.short_description,
    )
    #self.primitive_unitcell = inventory.primitive_unitcell
    return
Exemple #12
0
 def test1(self):
     'Structure: property "primitive_unitcell"'
     lattice = Lattice(a=2, b=2, c=2, alpha=90, beta=90, gamma=90)
     atoms = [
         Atom('Ni', (0, 0, 0)),
         Atom('Ni', (0, 0.5, 0.5)),
         Atom('Ni', (0.5, 0, 0.5)),
         Atom('Ni', (0.5, 0.5, 0)),
     ]
     struct = Structure(lattice=lattice, atoms=atoms, sgid=225)
     pcell = struct.primitive_unitcell
     self.assert_(pcell)
     self.assertArrayEqual(pcell.base,
                           [[-1., 0., 1.], [0., 1., 1.], [-1., 1., 0.]])
     return
    def test3(self):
        'Structure:  "primitive_unitcell"'
        lattice = Lattice(a=2, b=2, c=2, alpha=90, beta=90, gamma=90)
        atoms = [
            Atom('Fe', (0, 0, 0)),
            Atom('Pd', (0, 0.5, 0.5)),
            Atom('Pd', (0.5, 0, 0.5)),
            Atom('Pd', (0.5, 0.5, 0)),
        ]
        struct = Structure(lattice=lattice, atoms=atoms, sgid=221)
        verdict, pos, op = struct.symConsistent()
        print verdict, pos, op
        self.assert_(verdict)

        self.assertEqual(len(struct.primitive_unitcell.atoms), 4)
        return
 def test_naI_supercell(self):
     """check supercell expansion for Al.
     """
     at1 = Atom('Na', [0.0, 0.0, 0.0])
     at2 = Atom('Na', [0.0, 0.5, 0.5])
     at3 = Atom('Na', [0.5, 0.0, 0.5])
     at4 = Atom('Na', [0.5, 0.5, 0.0])
     at5 = Atom('I', [0.5, 0.5, 0.5])
     at6 = Atom('I', [0.0, 0.0, 0.5])
     at7 = Atom('I', [0.0, 0.5, 0.0])
     at8 = Atom('I', [0.5, 0.0, 0.0])
     naI = Structure([at1, at2, at3, at4, at5, at6, at7, at8],
                     lattice=Lattice(6.482, 6.482, 6.482, 90, 90, 90),
                     sgid=225)
     for sym, pos in zip(naI.symbols, naI.xyz_cartn):
         print sym + ' %f %f %f' % tuple(pos)
     print
     naI_sup = supercell(naI, (2, 2, 2))
     for sym, pos in zip(naI_sup.symbols, naI_sup.xyz_cartn):
         print sym + ' %f %f %f' % tuple(pos)
import sys
print sys.path

from dsaw.db import connect
db = connect(db ='postgres:///test')
db.autocommit(True)

# declare tables

from matter.Lattice import Lattice
#db.registerTable(Lattice)
#db.createAllTables()

db.createTable(Lattice)

l1 = Lattice()
l1.id = 'l1'
db.insertRow(l1)

#t1.myattribute = 'biggercake'
#db.updateRecord(t1)

db.destroyAllTables()
Exemple #16
0
def OrthorhombicPeriodicUniverse(vecLengths):
    from matter.Lattice import Lattice
    return Lattice(base=[[vecLengths[0],0,0], [0,vecLengths[1],0],
                                         [0,0,vecLengths[2]]])
Exemple #17
0
class QELattice(object):
    """Class QELattice for working with crystal lattices in QE notation
       Uses matter.Lattice class for storage
       
       Following properties are dynamically linked to other properties  
       (E.g. lattice vectors) and QEInput(if QEInput.autoUpdate = True(default)):
       ibrav                  -- lattice type, setting it into a different value 
                                 will automatically update lattice vectors, 
                                 QE parsing object and structure
                                 if ibrav = 0, only 'a' parameter is relevant
       a, b, c, cBC, cAC ,cAB -- lattice parameters, setting any of them will 
                                 dynamically update the QE parsing object
                                 (e.g. pw.input) and structure(if relevant). 
                                 They are also ibrav sensitive.  E.g. if 
                                 ibrav = 1 (simple cubic). Setting 'a' to a \
                                 different value will also modify  b and c. 
                                  
       type                   -- lattice type to save into PWSCF cfg file 
                                 'celldm'  (default)
                                 'traditional' - using a,b,c,cosAC, cosAB, cosBC;
                                 'generic cubic', 'generic hexagonal' - assume 
                                  that section 'CELL_PARAMETERS' exists
                                 'generic' types also  assume/set ibrav = 0
      setLattice()            -- will set everything at once
    """

    def __init__(self, ibrav = 1,a = 1. ,b = 1.,c = 1.,
            cBC = 0.,cAC = 0. ,cAB = 0., base = None, lattice = None, qeInput = None ):
        self.formatString = '%# .8f %# .8f %# .8f'
        self._qeInput = qeInput
        #self._qeInput = None
        self._type = 'celldm'
        # Lattice container class, used for lattice operations
        self.__primitiveLattice = Lattice()
        # Lattice vectors in bohr or angstrom:
        self._base = None
        # initialize the lattice if there is enough information 
        if ibrav > 0 and base != None:
            self.setLatticeFromQEVectors(ibrav, base)
        else:
            self.setLattice(ibrav ,a ,b , c, cBC ,cAC ,cAB, base)
        # copy constructor:
        if isinstance(ibrav, QELattice) or lattice != None:
            if lattice.ibrav > 0:
                self.setLattice( ibrav = lattice.ibrav, a = lattice.a, \
                                         b = lattice.b, c = lattice.c,
                                         cBC = lattice.cBC, cAC = lattice.cAC,\
                                         cAB = lattice.cAB)
            else:
                self.setLattice( ibrav = lattice.ibrav, a = lattice.a, \
                                                          base = lattice.base )            
            # copy input:
            from pwinput import PWInput        
            self._qeInput = PWInput()
            self._qeInput.readString( lattice._qeInput.toString() )

    def __str__(self):
        """simple string representation"""
        st = ''
        if self._ibrav == 0:
            st = st + '"generic" cell:\n'
        else:
            qeBaseTuple = self._getQEBaseFromParCos(self._ibrav, self._a, self._b, \
                                       self._c, self._cBC, self._cAC, self._cAB)
            qeBase = numpy.array(qeBaseTuple[1], dtype = float)*qeBaseTuple[0]
            st = st + '"' + qeBaseTuple[2] + '" cell:\n'
        for i in range(3):
            v = self.__primitiveLattice.base[i,:]
            st = st + self.formatString%(v[0], v[1], v[2])
            st = st + '\n'
        return st    
            
    def cartesian(self, u):
        """return cartesian coordinates of a lattice vector"""
        return self.__primitiveLattice.cartesian(u)
    
    def fractional(self, rc):
        """return fractional coordinates of a cartesian vector"""
        return self.__primitiveLattice.fractional(rc)

    def dot(self, u, v):
        """return dot product of 2 lattice vectors"""
        return self.__primitiveLattice.dot(u, v)

    def norm(self, u):
        """return norm of a lattice vector"""
        return self.__primitiveLattice.norm(u)

    def dist(self, u, v):
        """Return distance of 2 points in lattice coordinates.
        """
        return self.__primitiveLattice.dist(u, v)

    def angle(self, u, v):
        """Return angle(u, v) --> angle of 2 lattice vectors in degrees.
        """
        return self.__primitiveLattice.angle(u, v)

    def recipCartesian(self, kPoint):
        """Conversts a vector in fractional coordinates in reciprocal space into
           a vector in cartesian coordinates"""
        recip_base = self.matter().reciprocal().base*self._a
        return numpy.dot( kPoint, recip_base)

    def reciprocalBase(self):
        """
        Get reciprocal lattice vectors in units of 2*pi/a
        """
        return self.matter().reciprocal().base*self._a

    def latticeParams(self):
        """Returns tuple of six lattice parameters:
            a, b, c, cos(BC), cos(AC), cos(AB)
        """
        return [self._a, self._b,self._c, self._cBC, self._cAC, self._cAB]        
        
    def setLattice(self, ibrav, a = None, b = None, c = None,
                   cBC = None, cAC = None, cAB = None, base = None, updateInput = True):
        """ 'base', numpy array of lattice vectors, and 'a'  will only be used
            if ibrav == 0. Otherwise, ibrav + lattice parameters will be used"""
        from math import acos
#        if [ibrav, a,b,c,cBC,cAC,cAB, base] == 8*[None]:
#            return None
        if ibrav == None:
            raise NotImplementedError('ibrav should be specified')
        self._ibrav = ibrav
        if self._ibrav == 0:
#            print 'Found "generic" cell:'
            if base == None:
                raise NotImplementedError('base must be specified')
            if a == None:
				raise # a and the base must be provided for ibrav = 0
            qeBase = numpy.array(base, dtype = float)#*self._a/a
            self._a = a
#            print qeBase
            #self._a = 1.0
            if 'generic' not in self._type:
                self._type = 'generic cubic'
            self.__primitiveLattice.setLatBase(qeBase)
            #self._standardLattice.setLatBase(qeBase)
        else:
            # Make sure all lattice parameters are mutually consistent 
            # according to ibrav. base array is not used:
            if ibrav < 4 or ibrav == 5: 
                if a is not None: 
                    self._a = self._b = self._c = a
                else:
                    if b is not None: 
                        self._a = self._b = self._c = b
                    else:
                        if c is not None: 
                            self._a = self._b = self._c = c                        
                        else:
                            self._b = self._c = self._a
                if ibrav < 4:                            
                    self._cBC = self._cAC = self._cAB = 0.0
            if ibrav == 4 or ibrav == 6 or ibrav == 7: 
                if a is not None: 
                    self._a = self._b = a
                else:
                    if b is not None: 
                        self._a = self._b = b
                    else:
                        self._b = self._a
                if c is not None: 
                    self._c = c
                if ibrav == 4:
                    self._cAB = cosd(120.0)
                    self._cBC = self._cAC = 0.0
            if ibrav == 5:
                if cBC is not None:
                    self._cBC = self._cAC = self._cAB = cBC
                else:
                    if cAC is not None:
                        self._cBC = self._cAC = self._cAB = cAC
                    else:
                        if cAB is not None:
                            self._cBC = self._cAC = self._cAB = cAB
                        else:
                            self._cAC = self._cAB = self._cBC
            if  ibrav == 6 or ibrav == 7:
                self._cBC = self._cAC = self._cAB = 0.0
            if ibrav > 7 and ibrav <= 14:
                if a is not None: 
                    self._a = a
                if b is not None: 
                    self._b = b
                if c is not None: 
                    self._c = c
                if ibrav > 7 and ibrav < 12:
                    self._cBC = self._cAC = self._cAB = 0.0
            if ibrav == 12 or ibrav == 13:
                if cAB is not None:
                    self._cAB = cAB
                else:
                    if cBC is not None or cAC is not None:
                        raise Exception("Should specify cos(AB) only for" + \
                                         " ibrav = 12 or ibrav = 13" )
                self._cBC = self._cAC = 0.0
            if ibrav == 14:
                if cBC is not None:
                    self._cBC = cBC
                if cAC is not None:
                    self._cAC = cAC
                if cAB is not None:
                    self._cAB = cAB
            qeBaseTuple = self._getQEBaseFromParCos(self._ibrav, self._a, self._b,
                                               self._c, self._cBC, self._cAC, self._cAB)
            qeBase = numpy.array(qeBaseTuple[1], dtype = float)*qeBaseTuple[0]            
            self.__primitiveLattice.setLatBase(qeBase)
            alpha = degrees(acos(self._cBC))
            beta = degrees(acos(self._cAC))
            gamma = degrees(acos(self._cAB))
            #self._standardLattice.setLatPar(self._a,self._b,self._c,alpha,beta,gamma)
        #self._a0 = a
        self._base = qeBase
        
        if self._qeInput != None and updateInput == True:
            #self.updatePWInput()
            self._qeInput.update( forceUpdate = True )       

    def matter(self):
        '''Returns matter.Lattice object. Do not use it for reading  QE
        (standard cell) lattice parameters. Use latticeParams, or a, b, c , ...
        instead'''
        return self.__primitiveLattice

    def updatePWInput(self, qeInput = None):
        """
        Deprecated
        """
        self._qeInput.update( forceUpdate = True )
    
    def setLatticeFromQEVectors(self, ibrav, vectors):
        """ Will extract conventional lattice parameters from primitive vectors.
            'vectors' - is a list with primitive vectors (in QE notation),
            including lattice parameters. For example from PWSCF output"""
        from numpy import dot
        # default values:
        a = b = c = 1.0
        cBC = cAC = cAB = 0.0
        v = numpy.array(vectors, dtype = float)
        if ibrav == 0:
            self.setLattice(ibrav = 0, a =  1.0, base = vectors )
            return
            #raise NotImplementedError
        # sc simple cubic:
        if ibrav == 1:
            a = v[0,0]
        if ibrav == 2:
            a = b = c = sqrt( 2.0*dot(v[0,:],v[0,:]) )
        if ibrav == 3:
            a = b = c = 2.0*sqrt( dot(v[0,:],v[0,:])/3.0)
        if ibrav == 4:
            a = b = sqrt( dot(v[0,:],v[0,:]))
            c = sqrt( dot(v[2,:],v[2,:]))
            cAB = cosd(120.0)
        if ibrav == 5:
            a = b = c = sqrt( dot(v[0,:],v[0,:]))
            cBC = cAC = cAB = dot(v[0,:],v[2,:])/a**2
        if ibrav == 6:
            a = b = sqrt( dot(v[0,:],v[0,:]))
            c = sqrt( dot(v[2,:],v[2,:]))
        if ibrav == 7:
            a = b = v[1,0] - v[2,0]
            c = v[1,2] + v[2,2]
        if ibrav == 8:
            a = v[0,0]
            b = v[1,1]
            c = v[2,2]
        if ibrav == 9:
            a = v[0,0] - v[1,0]
            b = v[0,1] + v[1,1]
            c = v[2,2]
        if ibrav == 10:
            a = v[2,0] - v[0,0] - v[1,0]
            b = v[2,1] - v[0,1] + v[1,1]
            c = v[0,2] - v[1,2] + v[2,2]
        if ibrav == 11:
            a = v[0,0] - v[1,0]
            b = v[1,1] - v[2,1]
            c = v[0,2] - v[2,2]
        if ibrav == 12:
            a = v[0,0]
            b = sqrt( dot(v[1,:],v[1,:]))
            cAB = v[1,0]/b
            c = v[2,2]
        if ibrav == 13:
            a = v[0,0] + v[2,0]
            b = sqrt( dot(v[1,:],v[1,:]))
            c = v[2,2] - v[0,2]
            cAB = v[1,0]/b
        if ibrav == 14:
            a = v[0,0]
            b = sqrt( dot(v[1,:],v[1,:]))
            cAB = v[1,0]/b
            c = sqrt( dot(v[2,:],v[2,:]))
            cAC = v[2,0]/c
            cBC = v[2,1]*sqrt(1.0 - cAB**2)/c + cAC*cAB        
        self.setLattice(ibrav, a, b, c, cBC, cAC, cAB)

    ####################################################################
    # property handlers
    ####################################################################
    # lattice parameters
#   def _get_a0(self):
#       if self._a0 != None:
#           return self._a0
#       else:
#           return self._a
#   a0 = property(_get_a0, doc ="old lattice parameter a0")

    def _get_a(self):
        return self._a
    def _set_a(self, value):
        #self._a = value
        self.setLattice(ibrav = self._ibrav, a = float(value), base = self._base/self._a*value)
    a = property(_get_a, _set_a, doc ="lattice parameter a")

    def _get_b(self):
        return self._b
    def _set_b(self, value):
        #self._b = value
        self.setLattice(ibrav = self._ibrav, b = float(value))
    b = property(_get_b, _set_b, doc ="""lattice parameter b""")

    def _get_c(self):
        return self._c
    def _set_c(self, value):
        #self._c = value
        self.setLattice(ibrav = self._ibrav, c = float(value))
    c = property(_get_c, _set_c, doc ="""lattice parameter c""")

    def _get_cBC(self):
        return self._cBC
    def _set_cBC(self, value):
        #self._cBC = value
        self.setLattice(ibrav = self._ibrav, cBC = float(value))
    cBC = property(_get_cBC, _set_cBC, doc ="""lattice parameter cBC""")

    def _get_cAC(self):
        return self._cAC
    def _set_cAC(self, value):
        #self._cAC = value
        self.setLattice(ibrav = self._ibrav, cAC = float(value))
    cAC = property(_get_cAC, _set_cAC, doc ="""lattice parameter cAC""")

    def _get_cAB(self):
        return self._cAB
    def _set_cAB(self, value):
        #self._cAB = value
        self.setLattice(ibrav = self._ibrav, cAB = float(value))
    cAB = property(_get_cAB, _set_cAB, doc ="""lattice parameter cAB""")

    def _get_ibrav(self):
        return self._ibrav
    def _set_ibrav(self, value):
        if value < 0: value = 0
        ibravOld = self._ibrav
        self._ibrav = value
        if value == 0:
            base = self._base#/self._a
            if ibravOld != 4:
                self._type = 'generic cubic'
            else:
                self._type = 'generic hexagonal'
            self.setLattice(ibrav = self._ibrav, a = self._a, base = base)
        else:
            if 'generic' in self._type:
                self._type = 'celldm'
            base = self._getQEBaseFromParCos( ibrav = self._ibrav, \
                   a = self._a, b = self._b, c = self._c, cBC = self._cBC, \
                   cAC = self._cAC, cAB = self._cAB )
            qebase = base[0]*numpy.array(base[1])
            self.setLatticeFromQEVectors(self._ibrav, qebase)
#            self.setLattice(self._ibrav)
    ibrav = property(_get_ibrav, _set_ibrav, doc ="""Lattice symmetry parameter
ibrav. Changing it will update the lattice, but leave atomic fractional 
coordinates unchanged""")

    def _get_type(self):
        return self._type
    def _set_type(self, value):
        if 'generic' in value:
            self._type = value
            self._ibrav = 0
            base = self._base #/self._a
            self.setLattice(ibrav = self._ibrav, a = self._a, base = base)
        else:
            if self._ibrav == 0:
                pass
            else:
                self._type = value
    type = property(_get_type, _set_type, doc ="""QE lattice type: 'celldm',
    'traditional' or 'generic cubic', 'generic hexagonal'(implies ibrav = 0""")
    
    
    def _get_base(self):
        return self._base    
    base = property(_get_base, doc ="""QE base array""")

    def _getQEBaseFromParCos( self, ibrav = 1, a = 1., b = 1., c = 1.,
                                    cBC = 0.,cAC = 0. ,cAB = 0.):
        c_a = float(c)/a
        # description dictionary of QE base vectors:
        QEBase = {
        # sc simple cubic:
        1 : (a, [[1, 0, 0],
                 [0, 1, 0],
                 [0, 0, 1]],
                 'Simple Cubic'),
        # fcc face centered cubic:
        2 : (a/2., [[-1, 0, 1],
                    [0, 1, 1],
                    [-1, 1, 0]],
                    'Face Centered Cubic'),
        # bcc body entered cubic:
        3 : (a/2., [[1, 1, 1],
                    [-1, 1, 1],
                    [-1, -1, 1]],
                    'Body Centered Cubic'), 
        # simple hexagonal and trigonal(p):
        4 : (a, [[1, 0, 0],
                 [-0.5, sqrt(3.0)/2.0, 0.],
                 [0,    0,          c_a]],
                 'Simple Hexagonal or Trigonal(P)'),
        # trigonal(r):
        5 : (a, [[sqrt((1.-cAB)/2.),-sqrt((1.-cAB)/6.), sqrt((1.+2.*cAB)/3.)],
                 [0, 2.*sqrt((1.-cAB)/6.),  sqrt((1.+2.*cAB)/3.)],
                 [-sqrt((1.-cAB)/2.), -sqrt((1.-cAB)/6.), sqrt((1.+2.*cAB)/3.)]],
                 'Trigonal(R)'),
        # simple tetragonal (p):
        6 : (a, [[1, 0, 0],
                 [0, 1, 0.],
                 [0, 0, c_a]],
                 'Simple Tetragonal(P)'),
        # body centered tetragonal (i):
        7 : (a/2., [[1, -1, c_a],
                    [1,  1, c_a],
                    [-1, -1, c_a]],
                    'Body Centered Tetragonal (I)'),
        # simple orthorhombic (p):
        8 : (1.0, [[a, 0., 0.],
                    [0., b, 0.],
                    [0., 0., c]],
                    'Simple Orthorhombic (P)'),  
        # bco base centered orthorhombic:
        9:  (1.0,  [[a/2., b/2., 0.],
                    [-a/2., b/2., 0.],
                    [0., 0., c]],
                    'Base Centered Orthorhombic'),
        # face centered orthorhombic:
        10: (1.0,  [[a/2., 0., c/2.],
                    [a/2., b/2., 0.],
                    [0., b/2., c/2.]],
                    'Face Centered Orthorhombic' ),
        # body centered orthorhombic:
        11: (1.0,  [[a/2., b/2., c/2.],
                    [-a/2., b/2., c/2.],
                    [-a/2., -b/2., c/2.]],
                    'Body Centered Orthorhombic'),
        # monoclinic (p):
        12: (1.0,  [[a, 0, 0],
                    [b*cAB, b*sqrt(1.0 - cAB**2), 0],
                    [0, 0, c]],
                    'Monoclinic (P)'),
        # base centered monoclinic:
        13: (1.0,  [[a/2., 0, -c/2.],
                    [b*cAB, b*sqrt(1.0 - cAB**2), 0],
                    [a/2., 0, c/2.]],
                    'Base Centered Monoclinic'),
        # triclinic:
        14: (1.0,  [[a, 0, 0],
                    [b*cAB, b*sqrt(1.0 - cAB**2), 0],
                    [c*cAC, c*( cBC-cAC*cAB )/sqrt(1.-cAB**2), c*sqrt( 1. + 
                    2.*cBC*cAC*cAB - cBC**2 - cAC**2 - cAB**2)/sqrt(1.-cAB**2)]],
                    'Triclinic')          
        }
        return QEBase[ibrav]
from dsaw.db import connect

db = connect(db='postgres:///test')
db.autocommit(True)
from dsaw.model.visitors.OrmManager import OrmManager

orm = OrmManager(db)

from matter.Lattice import Lattice

l1 = Lattice()
l1.id = 'l1'
orm.save(l1)

orm.destroyAllTables()
Exemple #19
0
def ParallelepipedicPeriodicUniverse(vecs):
    from matter.Lattice import Lattice
    return Lattice(base=vecs)
 def _setReducedStructureFromMatterStructure(self,
                                             structure,
                                             ibrav,
                                             massList=[],
                                             psList=[]):
     """
     structure - matter.Structure object
     ibrav - Lattice index
     psList - list of strings with potential names
     matterStructure object will be modified with reduced atomic positions
     """
     import copy
     matterLattice = copy.deepcopy(structure.lattice)
     # there is a big problem with what Nikolay is doing because he is initializing QELattice with abcalbega which
     # leaves room for errors in how the basis vectors are chosen compared to the old lattice
     a = matterLattice.a
     b = matterLattice.b
     c = matterLattice.c
     cAB = cosd(matterLattice.gamma)
     cBC = cosd(matterLattice.alpha)
     cAC = cosd(matterLattice.beta)
     qeLattice = QELattice(ibrav = ibrav, a = a, b = b, c = c,  cBC =  cBC, \
                           cAC = cAC, cAB = cAB)
     #what he should do is initialize the vectors of QELattice with the vectors of matterLattice
     #
     qeLattice._qeInput = self._qeInput
     self.lattice = qeLattice
     # make a deep copy:
     reducedStructure = Structure(atoms=structure)
     reducedStructure.placeInLattice(Lattice(base=qeLattice.matter().base))
     # collect atoms that are at equivalent position to some previous atom
     duplicates = set([
         a1 for i0, a0 in enumerate(reducedStructure)
         for a1 in reducedStructure[i0 + 1:] if a0.symbol == a1.symbol
         and equalPositions(a0.xyz, a1.xyz, eps=1e-4)
     ])
     # Filter out duplicate atoms.  Use slice assignment so that
     # reducedStructure is not replaced with a list.
     reducedStructure[:] = [
         a for a in reducedStructure if not a in duplicates
     ]
     atomNames = []
     for a in reducedStructure:
         if a.symbol not in atomNames:
             atomNames.append(a.symbol)
     atomicSpecies = {}
     for i, elem in enumerate(atomNames):
         if len(massList) - 1 < i:
             mass = 0
         else:
             mass = massList[i]
         if len(psList) - 1 < i:
             ps = ''
         else:
             ps = psList[i]
         atomicSpecies[elem] = (mass, ps)
     self[:] = []
     # convert to bohr units
     self.lattice.setLattice(ibrav, self.lattice.a*1.889725989, \
                              self.lattice.b*1.889725989,
                              self.lattice.c*1.889725989)
     for atom in reducedStructure:
         self.addNewAtom(atype = atom.symbol, xyz = atom.xyz, \
                         mass = atomicSpecies[atom.symbol][0], \
                         potential = atomicSpecies[atom.symbol][1],\
                         lattice = self.lattice, optConstraint = [])
from dsaw.db import connect
db = connect(db='postgres:///test', echo=True)
db.autocommit(True)
from dsaw.model.visitors.OrmManager import OrmManager
orm = OrmManager(db)

from matter.Atom import Atom
from matter.Lattice import Lattice
from matter.orm.BigStructure import Structure

at1 = Atom('C', [0.333333333333333, 0.666666666666667, 0])
at2 = Atom('C', [0.666666666666667, 0.333333333333333, 0])
hexag = Lattice(2.456, 2.456, 6.696, 90, 90, 120)

graphite = Structure([at1, at2], lattice=hexag, sgid=194)
graphite.id = 'graphite'
print graphite
#lattice=Lattice(a=2.456, b=2.456, c=6.696, alpha=90, beta=90, gamma=120)
#C    0.333333 0.666667 0.000000 1.0000
#C    0.666667 0.333333 0.000000 1.0000

from matter.expansion import supercell
graphite_sheet = supercell(graphite, (10, 10, 1))
graphite_sheet.id = 'sheet'
print graphite_sheet.getChemicalFormula()
#C200

orm.save(graphite_sheet)

#orm.destroyAllTables()
Exemple #22
0
from properties import *
import numpy
from matter.Lattice import Lattice
cartesian_lattice = Lattice()
       
class AtomPropertyCurator(type):
    """meta class for Atom class to collect all properties and set up
    some class constants.
    It establishes:
      - Atom class's docstring
      - a list of names of properties
      - the list of setable attributes, "_setable", (to be used in method __setattr__ of Atom class).
    NOTE: Brandon doesn't like this third one...user-scripters should be able to set whatever 
    they want...why limit them? Alex read this note :)
    """

    def __init__(AtomClass, name, bases, dict):
        from matter import METACLASS_CTOR_NEEDS_TYPE
        if METACLASS_CTOR_NEEDS_TYPE:
            type.__init__(AtomClass, name, bases, dict)
        else:
            type.__init__(name, bases, dict)

        isotopeNumberProperties, inferredProperties, states = AtomPropertyCurator.collectProperties( AtomClass )
        properties = isotopeNumberProperties + inferredProperties + states
        AtomClass.propertyNames = [ p.name for p in properties ]
        
        propStr = '\n'.join(
            [ "  %s: %s" % (p.name, p.doc) for p in properties ] )

        #global doc