Exemple #1
0
def test_aggregation_chain():
    """ test the aggregation chain with a single event attribute """

    class _EventInterface(ABC):
        @define_epoch_stats(sum)
        @define_episode_stats(sum)
        @define_step_stats(sum)
        def event1(self, attr1):
            pass

    agg_episode = LogStatsAggregator(LogStatsLevel.EPOCH)
    agg_step = LogStatsAggregator(LogStatsLevel.EPISODE, agg_episode)
    agg_event = LogStatsAggregator(LogStatsLevel.STEP, agg_step)

    no_steps = 5
    no_episodes = 7
    for episode in range(no_episodes):
        for step in range(no_steps):
            agg_event.add_event(EventRecord(_EventInterface, _EventInterface.event1, dict(attr1=2)))
            agg_event.add_event(EventRecord(_EventInterface, _EventInterface.event1, dict(attr1=3)))
            agg_event.reduce()

        episode_stats = agg_step.reduce()
        assert len(episode_stats) == 1
        value = episode_stats[(_EventInterface.event1, None, None)]
        assert value == no_steps * 5

    epoch_stats = agg_episode.reduce()
    assert len(epoch_stats) == 1
    value = epoch_stats[(_EventInterface.event1, None, None)]
    assert value == no_episodes * no_steps * 5
Exemple #2
0
def test_aggregation_chain_fork():
    """ test the aggregation chain with two event attributes and different aggregation operations """

    class _EventInterface(ABC):
        @define_epoch_stats(sum, input_name="attr1_sum")
        @define_epoch_stats(np.mean, input_name="attr2_mean")
        @define_episode_stats(sum, input_name="attr1_sum")
        @define_episode_stats(np.mean, input_name="attr2_mean")
        @define_step_stats(sum, input_name="attr1", output_name="attr1_sum")
        @define_step_stats(np.mean, input_name="attr1", output_name="attr1_mean")
        @define_step_stats(sum, input_name="attr2", output_name="attr2_sum")
        @define_step_stats(np.mean, input_name="attr2", output_name="attr2_mean")
        def event1(self, attr1, attr2):
            pass

    agg_episode = LogStatsAggregator(LogStatsLevel.EPOCH)
    agg_step = LogStatsAggregator(LogStatsLevel.EPISODE, agg_episode)
    agg_event = LogStatsAggregator(LogStatsLevel.STEP, agg_step)

    no_steps = 5
    no_episodes = 7
    for episode in range(no_episodes):
        for step in range(no_steps):
            agg_event.add_event(EventRecord(_EventInterface, _EventInterface.event1, dict(attr1=2.0, attr2=-2.0)))
            agg_event.add_event(EventRecord(_EventInterface, _EventInterface.event1, dict(attr1=3.0, attr2=-3.0)))

            step_stats = agg_event.reduce()
            assert len(step_stats) == 4
            value1_sum = step_stats[(_EventInterface.event1, "attr1_sum", None)]
            value1_mean = step_stats[(_EventInterface.event1, "attr1_mean", None)]
            value2_sum = step_stats[(_EventInterface.event1, "attr2_sum", None)]
            value2_mean = step_stats[(_EventInterface.event1, "attr2_mean", None)]
            assert value1_sum == 5.0
            assert value1_mean == 2.5
            assert value2_sum == -5.0
            assert value2_mean == -2.5

        episode_stats = agg_step.reduce()
        assert len(episode_stats) == 2
        value1 = episode_stats[(_EventInterface.event1, "attr1_sum", None)]
        value2 = episode_stats[(_EventInterface.event1, "attr2_mean", None)]
        assert value1 == no_steps * 5.0
        assert value2 == -2.5

    epoch_stats = agg_episode.reduce()
    assert len(epoch_stats) == 2
    value1 = epoch_stats[(_EventInterface.event1, "attr1_sum", None)]
    value2 = epoch_stats[(_EventInterface.event1, "attr2_mean", None)]
    assert value1 == no_episodes * no_steps * 5.0
    assert value2 == -2.5
Exemple #3
0
    def init_replay_buffer(replay_buffer: BaseReplayBuffer, initial_sampling_policy: Union[DictConfig, Policy],
                           initial_buffer_size: int, replay_buffer_seed: int,
                           split_rollouts_into_transitions: bool, n_rollout_steps: int,
                           env_factory: Callable[[], MazeEnv]) -> None:
        """Fill the buffer with initial_buffer_size rollouts by rolling out the initial_sampling_policy.

        :param replay_buffer: The replay buffer to use.
        :param initial_sampling_policy: The initial sampling policy used to fill the buffer to the initial fill state.
        :param initial_buffer_size: The initial size of the replay buffer filled by sampling from the initial sampling
            policy.
        :param replay_buffer_seed: A seed for initializing and sampling from the replay buffer.
        :param split_rollouts_into_transitions: Specify whether to split rollouts into individual transitions.
        :param n_rollout_steps: Number of rollouts steps to record in one rollout.
        :param env_factory: Factory function for envs to run rollouts on.
        """

        # Create the log stats aggregator for collecting kpis of initializing the replay buffer
        epoch_stats = LogStatsAggregator(LogStatsLevel.EPOCH)
        replay_stats_logger = get_stats_logger('init_replay_buffer')
        epoch_stats.register_consumer(replay_stats_logger)

        dummy_env = env_factory()
        dummy_env.seed(replay_buffer_seed)
        sampling_policy: Policy = \
            Factory(Policy).instantiate(initial_sampling_policy, action_spaces_dict=dummy_env.action_spaces_dict)
        sampling_policy.seed(replay_buffer_seed)
        rollout_generator = RolloutGenerator(env=dummy_env,
                                             record_next_observations=True,
                                             record_episode_stats=True)

        print(f'******* Starting to fill the replay buffer with {initial_buffer_size} transitions *******')
        while len(replay_buffer) < initial_buffer_size:
            trajectory = rollout_generator.rollout(policy=sampling_policy, n_steps=n_rollout_steps)

            if split_rollouts_into_transitions:
                replay_buffer.add_rollout(trajectory)
            else:
                replay_buffer.add_transition(trajectory)

            # collect episode statistics
            for step_record in trajectory.step_records:
                if step_record.episode_stats is not None:
                    epoch_stats.receive(step_record.episode_stats)

        # Print the kpis from initializing the replay buffer
        epoch_stats.reduce()
        # Remove the consumer again from the aggregator
        epoch_stats.remove_consumer(replay_stats_logger)
Exemple #4
0
def test_multi_group_projection():
    """ test grouping by three attributes """

    class _EventInterface(ABC):
        @define_stats_grouping("group1", "group2", "group3")
        @define_step_stats(sum, group_by="group1", output_name="g1")
        @define_step_stats(sum, group_by="group2", output_name="g2")
        @define_step_stats(sum, group_by="group3", output_name="g3")
        def event1(self, group1, group2, group3, attr1):
            pass

    agg = LogStatsAggregator(LogStatsLevel.STEP)
    agg.add_event(EventRecord(_EventInterface, _EventInterface.event1, dict(group1=1, group2=0, group3=0, attr1=1)))
    agg.add_event(EventRecord(_EventInterface, _EventInterface.event1, dict(group1=0, group2=1, group3=0, attr1=2)))
    agg.add_event(EventRecord(_EventInterface, _EventInterface.event1, dict(group1=0, group2=0, group3=1, attr1=4)))

    stats = agg.reduce()
    assert len(stats) == 6

    assert stats[(_EventInterface.event1, "g1", (0, None, None))] == 6
    assert stats[(_EventInterface.event1, "g1", (1, None, None))] == 1
    assert stats[(_EventInterface.event1, "g2", (None, 0, None))] == 5
    assert stats[(_EventInterface.event1, "g2", (None, 1, None))] == 2
    assert stats[(_EventInterface.event1, "g3", (None, None, 0))] == 3
    assert stats[(_EventInterface.event1, "g3", (None, None, 1))] == 4
Exemple #5
0
def test_aggregation_chain_multi_attribute():
    """ test the aggregation chain with two event attributes """

    class _EventInterface(ABC):
        @define_epoch_stats(sum, input_name="attr1")
        @define_epoch_stats(sum, input_name="attr2")
        @define_episode_stats(sum, input_name="attr1")
        @define_episode_stats(sum, input_name="attr2")
        @define_step_stats(sum, input_name="attr1")
        @define_step_stats(sum, input_name="attr2")
        def event1(self, attr1, attr2):
            pass

    agg_episode = LogStatsAggregator(LogStatsLevel.EPOCH)
    agg_step = LogStatsAggregator(LogStatsLevel.EPISODE, agg_episode)
    agg_event = LogStatsAggregator(LogStatsLevel.STEP, agg_step)

    no_steps = 5
    no_episodes = 7
    for episode in range(no_episodes):
        for step in range(no_steps):
            agg_event.add_event(EventRecord(_EventInterface, _EventInterface.event1, dict(attr1=2, attr2=-2)))
            agg_event.add_event(EventRecord(_EventInterface, _EventInterface.event1, dict(attr1=3, attr2=-3)))
            agg_event.reduce()

        episode_stats = agg_step.reduce()
        assert len(episode_stats) == 2
        value1 = episode_stats[(_EventInterface.event1, "attr1", None)]
        value2 = episode_stats[(_EventInterface.event1, "attr2", None)]
        assert value1 == no_steps * 5
        assert value2 == -no_steps * 5

    epoch_stats = agg_episode.reduce()
    assert len(epoch_stats) == 2
    value1 = epoch_stats[(_EventInterface.event1, "attr1", None)]
    value2 = epoch_stats[(_EventInterface.event1, "attr2", None)]
    assert value1 == no_episodes * no_steps * 5
    assert value2 == -no_episodes * no_steps * 5
Exemple #6
0
def test_event_skip_aggregation():
    """ test the once-per-step logging """

    class _EventInterface(ABC):
        @define_step_stats(None)
        def event1(self, attr1):
            pass

    agg = LogStatsAggregator(LogStatsLevel.STEP)
    agg.add_event(EventRecord(_EventInterface, _EventInterface.event1, dict(attr1=3)))

    stats = agg.reduce()
    assert len(stats) == 1

    key, value = next(iter(stats.items()))
    assert value == 3
    # tuple (event, output name)
    assert key == (_EventInterface.event1, None, None)

    # check if multiple calls per step are correctly detected
    with pytest.raises(AssertionError):
        agg.add_event(EventRecord(_EventInterface, _EventInterface.event1, dict(attr1=3)))
        agg.add_event(EventRecord(_EventInterface, _EventInterface.event1, dict(attr1=3)))
        agg.reduce()
Exemple #7
0
def test_event_single_attribute():
    """ test if the aggregation function receives scalars if there is only a single event attribute """

    class _EventInterface(ABC):
        @define_step_stats(sum)
        def event1(self, attr1):
            pass

    agg = LogStatsAggregator(LogStatsLevel.STEP)
    agg.add_event(EventRecord(_EventInterface, _EventInterface.event1, dict(attr1=1)))
    agg.add_event(EventRecord(_EventInterface, _EventInterface.event1, dict(attr1=2)))

    stats = agg.reduce()
    assert len(stats) == 1

    key, value = next(iter(stats.items()))
    assert value == 3
    # tuple (event, output name)
    assert key == (_EventInterface.event1, None, None)
Exemple #8
0
def test_event_counting():
    """ test counting as a simple aggregation that operates on the attributes dict """

    class _EventInterface(ABC):
        @define_step_stats(len)
        def event1(self, attr1, attr2):
            pass

    agg = LogStatsAggregator(LogStatsLevel.STEP)
    agg.add_event(EventRecord(_EventInterface, _EventInterface.event1, dict(attr1=1, attr2=2)))
    agg.add_event(EventRecord(_EventInterface, _EventInterface.event1, dict(attr1=1, attr2=2)))

    stats = agg.reduce()
    assert len(stats) == 1

    key, value = list(stats.items())[0]
    assert value == 2
    # tuple (event, output name)
    assert key == (_EventInterface.event1, None, None)
Exemple #9
0
def test_event_stats_histogram_2():
    """ test histogram loggin on an event level """

    class _EventInterface(ABC):
        @define_step_stats(histogram, input_name='attr1')
        @define_step_stats(histogram, input_name='attr2')
        def event1(self, attr1, attr2):
            pass

    agg = LogStatsAggregator(LogStatsLevel.STEP)
    agg.add_event(EventRecord(_EventInterface, _EventInterface.event1, dict(attr1=1, attr2=2)))
    agg.add_event(EventRecord(_EventInterface, _EventInterface.event1, dict(attr1=1, attr2=2)))

    stats = agg.reduce()
    assert len(stats) == 2

    value1 = stats[(_EventInterface.event1, "attr1", None)]
    value2 = stats[(_EventInterface.event1, "attr2", None)]

    assert value1 == [1, 1]
    assert value2 == [2, 2]
Exemple #10
0
def test_event_attributes():
    """ test the aggregation of individual event attributes """

    class _EventInterface(ABC):
        @define_step_stats(sum, input_name='attr1')
        @define_step_stats(sum, input_name='attr2')
        def event1(self, attr1, attr2):
            pass

    agg = LogStatsAggregator(LogStatsLevel.STEP)
    agg.add_event(EventRecord(_EventInterface, _EventInterface.event1, dict(attr1=1, attr2=3)))
    agg.add_event(EventRecord(_EventInterface, _EventInterface.event1, dict(attr1=1, attr2=3)))

    stats = agg.reduce()
    assert len(stats) == 2

    value1 = stats[(_EventInterface.event1, "attr1", None)]
    value2 = stats[(_EventInterface.event1, "attr2", None)]

    assert value1 == 2
    assert value2 == 6
Exemple #11
0
def test_grouping():
    """ test the aggregation of individual event attributes """

    class _EventInterface(ABC):
        @define_stats_grouping("group")
        @define_step_stats(sum)
        def event1(self, group, attr1):
            pass

    agg = LogStatsAggregator(LogStatsLevel.STEP)
    for v in [1, 3]:
        agg.add_event(EventRecord(_EventInterface, _EventInterface.event1, dict(group=0, attr1=v)))
        agg.add_event(EventRecord(_EventInterface, _EventInterface.event1, dict(group=1, attr1=v * 2)))

    stats = agg.reduce()
    assert len(stats) == 2

    value1 = stats[(_EventInterface.event1, None, (0,))]
    value2 = stats[(_EventInterface.event1, None, (1,))]

    assert value1 == 4
    assert value2 == 8
Exemple #12
0
def test_multi_grouping():
    """ test grouping by three attributes """

    class _EventInterface(ABC):
        @define_stats_grouping("group1", "group2", "group3")
        @define_step_stats(sum)
        def event1(self, group1, group2, group3, attr1):
            pass

    agg = LogStatsAggregator(LogStatsLevel.STEP)
    for i in [1, 8]:
        agg.add_event(EventRecord(_EventInterface, _EventInterface.event1,
                                  dict(group1=1, group2=0, group3=0, attr1=1 * i)))
        agg.add_event(EventRecord(_EventInterface, _EventInterface.event1,
                                  dict(group1=0, group2=1, group3=0, attr1=2 * i)))
        agg.add_event(EventRecord(_EventInterface, _EventInterface.event1,
                                  dict(group1=0, group2=0, group3=1, attr1=4 * i)))

    stats = agg.reduce()
    assert len(stats) == 3

    assert stats[(_EventInterface.event1, None, (1, 0, 0))] == 9
    assert stats[(_EventInterface.event1, None, (0, 1, 0))] == 18
    assert stats[(_EventInterface.event1, None, (0, 0, 1))] == 36
Exemple #13
0
class ESTrainer(Trainer):
    """Trainer class for OpenAI Evolution Strategies.

    :param algorithm_config: Algorithm parameters.
    :param torch_policy: Multi-step policy encapsulating the policy networks
    :param shared_noise: The noise table, with the same content for every worker and the master.
    :param normalization_stats: Normalization statistics as calculated by the NormalizeObservationWrapper.
    """
    def __init__(
        self, algorithm_config: ESAlgorithmConfig, torch_policy: TorchPolicy,
        shared_noise: SharedNoiseTable,
        normalization_stats: Optional[Dict[str, Tuple[np.ndarray, np.ndarray]]]
    ) -> None:
        super().__init__(algorithm_config)

        # --- training setup ---
        self.model_selection: Optional[ModelSelectionBase] = None
        self.policy: Union[Policy, TorchModel] = torch_policy

        self.shared_noise = shared_noise
        self.normalization_stats = normalization_stats

        # setup the optimizer, now that the policy is available
        self.optimizer = Factory(Optimizer).instantiate(
            algorithm_config.optimizer)
        self.optimizer.setup(self.policy)

        # prepare statistics collection
        self.eval_stats = LogStatsAggregator(LogStatsLevel.EPOCH,
                                             get_stats_logger("eval"))
        self.train_stats = LogStatsAggregator(LogStatsLevel.EPOCH,
                                              get_stats_logger("train"))
        # injection of ES-specific events
        self.es_events = self.train_stats.create_event_topic(ESEvents)

    @override(Trainer)
    def train(self,
              distributed_rollouts: ESDistributedRollouts,
              n_epochs: Optional[int] = None,
              model_selection: Optional[ModelSelectionBase] = None) -> None:
        """
        Run the ES training loop.
        :param distributed_rollouts: The distribution interface for experience collection.
        :param n_epochs: Number of epochs to train.
        :param model_selection: Optional model selection class, receives model evaluation results.
        """

        n_epochs = self.algorithm_config.n_epochs if n_epochs is None else n_epochs
        self.model_selection = model_selection

        for epoch in itertools.count():
            # check if we reached the max number of epochs
            if n_epochs and epoch == n_epochs:
                break

            print('********** Iteration {} **********'.format(epoch))

            step_start_time = time.time()

            # do the actual update step (disable autograd, as we calculate the gradient from the rollout returns)
            with torch.no_grad():
                self._update(distributed_rollouts)

            step_end_time = time.time()

            # log the step duration
            self.es_events.real_time(step_end_time - step_start_time)

            # update the epoch count
            increment_log_step()

    def load_state_dict(self, state_dict: Dict) -> None:
        """Set the model and optimizer state.
        :param state_dict: The state dict.
        """
        self.policy.load_state_dict(state_dict)

    @override(Trainer)
    def state_dict(self):
        """implementation of :class:`~maze.train.trainers.common.trainer.Trainer`
        """
        return self.policy.state_dict()

    @override(Trainer)
    def load_state(self, file_path: Union[str, BinaryIO]) -> None:
        """implementation of :class:`~maze.train.trainers.common.trainer.Trainer`
        """
        state_dict = torch.load(file_path,
                                map_location=torch.device(self.policy.device))
        self.load_state_dict(state_dict)

    def _update(self, distributed_rollouts: ESDistributedRollouts):
        # Pop off results for the current task
        n_train_episodes, n_timesteps_popped = 0, 0

        # aggregate all collected training rollouts for this episode
        epoch_results = ESRolloutResult(is_eval=False)

        # obtain a generator from the distribution interface
        rollouts_generator = distributed_rollouts.generate_rollouts(
            policy=self.policy,
            max_steps=self.algorithm_config.max_steps,
            noise_stddev=self.algorithm_config.noise_stddev,
            normalization_stats=self.normalization_stats)

        # collect eval and training rollouts
        for result in rollouts_generator:
            if result.is_eval:
                # This was an eval job
                for e in result.episode_stats:
                    self.eval_stats.receive(e)
                continue

            # we received training experience from perturbed policy networks
            epoch_results.noise_indices.extend(result.noise_indices)
            epoch_results.episode_stats.extend(result.episode_stats)

            # update the training statistics
            for e in result.episode_stats:
                self.train_stats.receive(e)

                n_train_episodes += 1
                n_timesteps_popped += e[(BaseEnvEvents.reward, "count", None)]

            # continue until we collected enough episodes and timesteps
            if (n_train_episodes >= self.algorithm_config.n_rollouts_per_update
                    and n_timesteps_popped >=
                    self.algorithm_config.n_timesteps_per_update):
                break

        # notify the model selection of the evaluation results
        eval_stats = self.eval_stats.reduce()
        if self.model_selection and len(eval_stats):
            reward = eval_stats[(BaseEnvEvents.reward, "mean", None)]
            self.model_selection.update(reward)

        # prepare returns, reshape the positive/negative antithetic estimation as (rollouts, 2)
        returns_n2 = np.array([
            e[(BaseEnvEvents.reward, "sum", None)]
            for e in epoch_results.episode_stats
        ]).reshape(-1, 2)

        # improve robustness: weight by rank, not by reward
        proc_returns_n2 = self._compute_centered_ranks(returns_n2)

        # compute the gradient
        g = self._batched_weighted_sum(
            proc_returns_n2[:, 0] - proc_returns_n2[:, 1],
            (self.shared_noise.get(idx, self.policy.num_params)
             for idx in epoch_results.noise_indices),
            batch_size=500)

        g /= n_train_episodes / 2.0

        # apply the weight update
        theta = get_flat_parameters(self.policy)
        update_ratio = self.optimizer.update(-g +
                                             self.algorithm_config.l2_penalty *
                                             theta.numpy())

        # statistics logging
        self.es_events.update_ratio(update_ratio)

        for i in self.policy.state_dict().keys():
            self.es_events.policy_grad_norm(policy_id=i,
                                            value=np.square(g).sum()**0.5)
            self.es_events.policy_norm(policy_id=i,
                                       value=np.square(theta).sum()**0.5)

    @classmethod
    def _iter_groups(cls, items: Iterable,
                     group_size: int) -> Generator[Tuple, None, None]:
        assert group_size >= 1
        group = []
        for x in items:
            group.append(x)
            if len(group) == group_size:
                yield tuple(group)
                del group[:]
        if group:
            yield tuple(group)

    @classmethod
    def _batched_weighted_sum(cls, weights: Iterable[float],
                              vectors: Iterable[np.ndarray],
                              batch_size: int) -> np.ndarray:
        """calculate a weighted sum of the given vectors, in steps of at most `batch_size` vectors"""
        # start with float, at the first operation numpy broadcasting takes care of the correct shape
        total: Union[np.array, float] = 0.

        for batch_weights, batch_vectors in zip(
                cls._iter_groups(weights, batch_size),
                cls._iter_groups(vectors, batch_size)):
            assert len(batch_weights) == len(batch_vectors) <= batch_size
            total += np.dot(np.asarray(batch_weights, dtype=np.float32),
                            np.asarray(batch_vectors, dtype=np.float32))

        return total

    @classmethod
    def _compute_ranks(cls, x: np.ndarray) -> np.ndarray:
        """
        Returns ranks in [0, len(x))
        Note: This is different from scipy.stats.rankdata, which returns ranks in [1, len(x)].
        """
        assert x.ndim == 1
        ranks = np.empty(len(x), dtype=int)
        ranks[x.argsort()] = np.arange(len(x))
        return ranks

    @classmethod
    def _compute_centered_ranks(cls, x):
        y = cls._compute_ranks(x.ravel()).reshape(x.shape).astype(np.float32)
        y /= (x.size - 1)
        y -= .5
        return y
Exemple #14
0
class LogStatsWrapper(Wrapper[MazeEnv], LogStatsEnv):
    """A statistics logging wrapper for :class:`~maze.core.env.base_env.BaseEnv`.

    :param env: The environment to wrap.
    """

    def __init__(self, env: MazeEnv, logging_prefix: Optional[str] = None):
        """Avoid calling this constructor directly, use :method:`wrap` instead."""
        # BaseEnv is a subset of gym.Env
        super().__init__(env)

        # initialize step aggregator
        self.epoch_stats = LogStatsAggregator(LogStatsLevel.EPOCH)
        self.episode_stats = LogStatsAggregator(LogStatsLevel.EPISODE, self.epoch_stats)
        self.step_stats = LogStatsAggregator(LogStatsLevel.STEP, self.episode_stats)

        self.stats_map = {
            LogStatsLevel.EPOCH: self.epoch_stats,
            LogStatsLevel.EPISODE: self.episode_stats,
            LogStatsLevel.STEP: self.step_stats
        }

        if logging_prefix is not None:
            self.epoch_stats.register_consumer(get_stats_logger(logging_prefix))

        self.last_env_time: Optional[int] = None
        self.reward_events = EventCollection()
        self.episode_event_log: Optional[EpisodeEventLog] = None

        self.step_stats_renderer = EventStatsRenderer()

        # register a post-step callback, so stats are recorded even in case that a wrapper
        # in the middle of the stack steps the environment (as done e.g. during step-skipping)
        if hasattr(env, "context") and isinstance(env.context, EnvironmentContext):
            env.context.register_post_step(self._record_stats_if_ready)

    T = TypeVar("T")

    @classmethod
    def wrap(cls, env: T, logging_prefix: Optional[str] = None) -> Union[T, LogStatsEnv]:
        """Creation method providing appropriate type hints. Preferred method to construct the wrapper
        compared to calling the class constructor directly.

        :param env: The environment to be wrapped.
        :param logging_prefix: The episode statistics is connected to the logging system with this tagging
                               prefix. If None, no logging happens.

        :return A newly created wrapper instance.
        """
        return cls(env, logging_prefix)

    @override(BaseEnv)
    def step(self, action: Any) -> Tuple[Any, Any, bool, Dict[Any, Any]]:
        """Collect the rewards for the logging statistics
        """

        # get identifier of current substep
        substep_id, _ = self.env.actor_id() if isinstance(self.env, StructuredEnv) else (None, None)

        # take core env step
        obs, rew, done, info = self.env.step(action)

        # record the reward
        self.reward_events.append(EventRecord(BaseEnvEvents, BaseEnvEvents.reward, dict(value=rew)))

        self._record_stats_if_ready()

        return obs, rew, done, info

    def _record_stats_if_ready(self) -> None:
        """Checks if stats are ready to record based on env time (for structured envs, we wait till the end
        of the whole structured step) and if so, does the recording.
        """
        if self.last_env_time is None:
            self.last_env_time = self.env.initial_env_time

        # Recording of event logs and stats happens:
        #  - for TimeEnvs:   Only if the env time changed, so that we record once per time step
        #  - for other envs: Every step
        if isinstance(self.env, TimeEnvMixin) and self.env.get_env_time() == self.last_env_time:
            return

        step_event_log = StepEventLog(env_time=self.last_env_time, events=self.reward_events)
        self.reward_events = EventCollection()

        if isinstance(self.env, EventEnvMixin):
            step_event_log.extend(self.env.get_step_events())

        # add all recorded events to the step aggregator
        for event_record in step_event_log.events:
            self.step_stats.add_event(event_record)

        # trigger logging statistics calculation
        self.step_stats.reduce()

        # lazy init new episode event log if needed
        if not self.episode_event_log:
            episode_id = self.env.get_episode_id() if isinstance(self.env, RecordableEnvMixin) else str(uuid.uuid4())
            self.episode_event_log = EpisodeEventLog(episode_id)

        # log raw events and init new step log
        self.episode_event_log.step_event_logs.append(step_event_log)

        # update the time of last stats recording
        self.last_env_time = self.env.get_env_time() if isinstance(self.env, TimeEnvMixin) else self.last_env_time + 1

    @override(BaseEnv)
    def reset(self) -> Any:
        """Reset the environment and trigger the episode statistics calculation of the previous run.
        """
        # Generate the episode stats from the previous rollout if any
        self._calculate_kpis()
        self.episode_stats.reduce()
        self._write_episode_event_log()

        # Initialize recording for the new episode (so we can record events already during env reset)
        self.last_env_time = None
        self.reward_events = EventCollection()

        return self.env.reset()

    @override(BaseEnv)
    def close(self):
        """Close the stats rendering figure if needed."""
        self.step_stats_renderer.close()

    @override(LogStatsEnv)
    def get_stats(self, level: LogStatsLevel) -> LogStatsAggregator:
        """Implementation of the LogStatsEnv interface, return the statistics aggregator."""
        aggregator = self.stats_map[level]
        return aggregator

    @override(LogStatsEnv)
    def write_epoch_stats(self):
        """Implementation of the LogStatsEnv interface, call reduce on the episode aggregator.
        """
        if self.episode_event_log:
            self._calculate_kpis()
            self.episode_stats.reduce()
        self.epoch_stats.reduce()
        self._write_episode_event_log()
        self.episode_event_log = None

    @override(LogStatsEnv)
    def get_stats_value(self,
                        event: Callable,
                        level: LogStatsLevel,
                        name: Optional[str] = None) -> LogStatsValue:
        """Implementation of the LogStatsEnv interface, obtain the value from the cached aggregator statistics.
        """
        return self.epoch_stats.last_stats[(event, name, None)]

    @override(LogStatsEnv)
    def clear_epoch_stats(self) -> None:
        """Implementation of the LogStatsEnv interface, clear out episode statistics collected so far in this epoch."""
        self.epoch_stats.clear_inputs()

    def render_stats(self,
                     event_name: str = "BaseEnvEvents.reward",
                     metric_name: str = "value",
                     aggregation_func: Optional[Union[str, Callable]] = None,
                     group_by: str = None,
                     post_processing_func: Optional[Union[str, Callable]] = 'cumsum'):
        """Render statistics from the currently running episode.

        Rendering is based on event logs. You can select arbitrary events from those dispatched by the currently
        running environment.

        :param event_name: Name of the even the even log corresponds to
        :param metric_name: Metric to use (one of the event attributes, e.g. "n_items" -- depends on the event type)
        :param aggregation_func: Optionally, specifies how to aggregate the metric on step level, i.e. when there
                                 are multiple same events dispatched during the same step.
        :param group_by: Optionally, another of event attributes to group by on the step level (e.g. "product_id")
        :param post_processing_func: Optionally, a function to post-process the data ("cumsum" is often used)"""
        self.step_stats_renderer.render_current_episode_stats(
            self.episode_event_log, event_name, metric_name,
            aggregation_func, group_by, post_processing_func)

    def _calculate_kpis(self):
        """Calculate KPIs and append them to both aggregated and logged events."""
        if not isinstance(self.env, EventEnvMixin) or not self.episode_event_log:
            return

        kpi_calculator = self.env.get_kpi_calculator()
        if kpi_calculator is None:
            return

        last_maze_state = self.env.get_maze_state() if isinstance(self.env, RecordableEnvMixin) else None

        kpis_dict = kpi_calculator.calculate_kpis(self.episode_event_log, last_maze_state)
        kpi_events = []
        for name, value in kpis_dict.items():
            kpi_events.append(EventRecord(BaseEnvEvents, BaseEnvEvents.kpi, dict(name=name, value=value)))

        for event_record in kpi_events:
            self.episode_stats.add_event(event_record)  # Add the events to episode aggregator
            self.episode_event_log.step_event_logs[-1].events.append(event_record)  # Log the events

    def _write_episode_event_log(self):
        """Send the episode event log to writers."""
        if self.episode_event_log:
            LogEventsWriterRegistry.record_event_logs(self.episode_event_log)

        self.episode_event_log = None

    @override(Wrapper)
    def get_observation_and_action_dicts(self, maze_state: Optional[MazeStateType],
                                         maze_action: Optional[MazeActionType],
                                         first_step_in_episode: bool) \
            -> Tuple[Optional[Dict[Union[int, str], Any]], Optional[Dict[Union[int, str], Any]]]:
        """Keep both actions and observation the same."""
        return self.env.get_observation_and_action_dicts(maze_state, maze_action, first_step_in_episode)

    @override(SimulatedEnvMixin)
    def clone_from(self, env: 'LogStatsWrapper') -> None:
        """implementation of :class:`~maze.core.env.simulated_env_mixin.SimulatedEnvMixin`."""
        raise RuntimeError("Cloning the 'LogStatsWrapper' is not supported.")

    def get_last_step_events(self, query: Union[Callable, Iterable[Callable]] = None):
        """Convenience accessor to all events recorded during the last step.

        :param query: Specify which events to return (one or more interface methods)
        :return: Recorded events from the last step (all if no query is present)
        """
        if not self.episode_event_log or len(self.episode_event_log.step_event_logs) == 0:
            return []

        last_step_log = self.episode_event_log.step_event_logs[-1]
        if query:
            return list(last_step_log.events.query_events(query))
        else:
            return list(last_step_log.events.events)
class ParallelRolloutRunner(RolloutRunner):
    """Runs rollout in multiple processes in parallel.

    Both agent and environment are run in multiple instances across multiple processes. While this greatly speeds
    up the rollout, the memory consumption might be high for large environments and agents.

    Trajectory recording, event logging, as well as stats logging are supported. Trajectory logging happens
    in the child processes. Event logs and stats are shipped back to the main process so that they can be
    handled together there. This allows monitoring of progress and calculation of summary stats across
    all the processes.

    (Note that the relevant wrappers need to be present in the config for the trajectory/event/stats logging to work.
    Data are logged into the working directory managed by hydra.)

    In case of early rollout termination using a keyboard interrupt, data for all episodes completed till that
    point will be preserved (= written out). Graceful shutdown will be attempted, including calculation of statistics
    across the episodes completed before the rollout was terminated.

    :param n_episodes: Count of episodes to run
    :param max_episode_steps: Count of steps to run in each episode (if environment returns done, the episode
                                will be finished earlier though)
    :param n_processes: Count of processes to spread the rollout across.
    :param record_trajectory: Whether to record trajectory data
    :param record_event_logs: Whether to record event logs
    """

    def __init__(self,
                 n_episodes: int,
                 max_episode_steps: int,
                 n_processes: int,
                 record_trajectory: bool,
                 record_event_logs: bool):
        super().__init__(n_episodes, max_episode_steps, record_trajectory, record_event_logs)
        self.n_processes = n_processes
        self.epoch_stats_aggregator = None
        self.reporting_queue = None

    @override(RolloutRunner)
    def run_with(self, env: ConfigType, wrappers: CollectionOfConfigType, agent: ConfigType):
        """Run the parallel rollout in multiple worker processes."""
        workers = self._launch_workers(env, wrappers, agent)
        try:
            self._monitor_rollout(workers)
        except KeyboardInterrupt:
            self._attempt_graceful_exit(workers)

    def _launch_workers(self, env: ConfigType, wrappers: CollectionOfConfigType, agent: ConfigType) \
            -> Iterable[Process]:
        """Configure the workers according to the rollout config and launch them."""
        # Split total episode count across workers
        episodes_per_process = [0] * self.n_processes
        for i in range(self.n_episodes):
            episodes_per_process[i % self.n_processes] += 1

        # Configure and launch the processes
        self.reporting_queue = Queue()
        workers = []
        for n_process_episodes in episodes_per_process:
            if n_process_episodes == 0:
                break

            p = Process(
                target=ParallelRolloutWorker.run,
                args=(env, wrappers, agent,
                      n_process_episodes, self.max_episode_steps,
                      self.record_trajectory, self.input_dir, self.reporting_queue,
                      self.maze_seeding.generate_env_instance_seed(),
                      self.maze_seeding.generate_agent_instance_seed()),
                daemon=True
            )
            p.start()
            workers.append(p)

        # Perform writer registration -- after the forks so that it is not carried over to child processes
        if self.record_event_logs:
            LogEventsWriterRegistry.register_writer(LogEventsWriterTSV(log_dir="./event_logs"))
        register_log_stats_writer(LogStatsWriterConsole())
        self.epoch_stats_aggregator = LogStatsAggregator(LogStatsLevel.EPOCH)
        self.epoch_stats_aggregator.register_consumer(get_stats_logger("rollout_stats"))

        return workers

    def _monitor_rollout(self, workers: Iterable[Process]) -> None:
        """Collect the stats and event logs from the rollout, print progress, and join the workers when done."""

        for _ in tqdm(range(self.n_episodes), desc="Episodes done", unit=" episodes"):
            report = self.reporting_queue.get()
            if isinstance(report, ExceptionReport):
                for p in workers:
                    p.terminate()
                raise RuntimeError("A worker encountered the following error:\n"
                                   + report.traceback) from report.exception

            episode_stats, episode_event_log = report
            if episode_stats is not None:
                self.epoch_stats_aggregator.receive(episode_stats)
            if episode_event_log is not None:
                LogEventsWriterRegistry.record_event_logs(episode_event_log)

        for w in workers:
            w.join()

        if len(self.epoch_stats_aggregator.input) != 0:
            self.epoch_stats_aggregator.reduce()

    def _attempt_graceful_exit(self, workers: Iterable[Process]) -> None:
        """Print statistics collected so far and exit gracefully."""

        print("\n\nShut down requested, exiting gracefully...\n")

        for w in workers:
            w.terminate()

        if len(self.epoch_stats_aggregator.input) != 0:
            print("Stats from the completed part of rollout:\n")
            self.epoch_stats_aggregator.reduce()

        print("\nRollout done (terminated prematurely).")
Exemple #16
0
class StructuredVectorEnv(VectorEnv, StructuredEnv, StructuredEnvSpacesMixin,
                          LogStatsEnv, TimeEnvMixin, ABC):
    """Common superclass for the structured vectorised env implementations in Maze.

    :param n_envs: The number of vectorised environments.
    :param action_spaces_dict: Action spaces dict (not vectorized, as it is the same for all environments)
    :param observation_spaces_dict: Observation spaces dict (not vectorized, as it is the same for all environments)
    :param logging_prefix: If set, will report epoch statistics under this logging prefix.
    """
    def __init__(self,
                 n_envs: int,
                 action_spaces_dict: Dict[StepKeyType, gym.spaces.Space],
                 observation_spaces_dict: Dict[StepKeyType, gym.spaces.Space],
                 agent_counts_dict: Dict[StepKeyType, int],
                 logging_prefix: Optional[str] = None):
        super().__init__(n_envs)

        # Spaces
        self._action_spaces_dict = action_spaces_dict
        self._observation_spaces_dict = observation_spaces_dict
        self._agent_counts_dict = agent_counts_dict

        # Aggregate episode statistics from individual envs
        self.epoch_stats = LogStatsAggregator(LogStatsLevel.EPOCH)

        # register a logger for the epoch statistics if desired
        if logging_prefix is not None:
            self.epoch_stats.register_consumer(
                get_stats_logger(logging_prefix))

        # Keep track of current actor IDs, actor dones, and env times (should be updated in step and reset methods).
        self._actor_ids = None
        self._actor_dones = None
        self._env_times = None

    @override(StructuredEnv)
    def actor_id(self) -> ActorID:
        """Current actor ID (should be the same for all envs, as only synchronous envs are supported)."""
        assert len(set(self._actor_ids)
                   ) == 1, "only synchronous environments are supported."
        return self._actor_ids[0]

    @property
    def agent_counts_dict(self) -> Dict[StepKeyType, int]:
        """Return the agent counts of one of the vectorised envs."""
        return self._agent_counts_dict

    @override(StructuredEnv)
    def is_actor_done(self) -> np.ndarray:
        """Return the done flags of all actors in a list."""
        return self._actor_dones

    @abstractmethod
    @override(StructuredEnv)
    def get_actor_rewards(self) -> Optional[np.ndarray]:
        """Individual implementations need to override this to support structured rewards."""

    @override(TimeEnvMixin)
    def get_env_time(self) -> np.ndarray:
        """Return current env time for all vectorised environments."""
        return self._env_times

    @property
    def action_spaces_dict(self) -> Dict[Union[int, str], gym.spaces.Space]:
        """Return the action space of one of the vectorised envs."""
        return self._action_spaces_dict

    @property
    def observation_spaces_dict(
            self) -> Dict[Union[int, str], gym.spaces.Space]:
        """Return the observation space of one of the vectorised envs."""
        return self._observation_spaces_dict

    @property
    @override(StructuredEnvSpacesMixin)
    def action_space(self) -> gym.spaces.Space:
        """implementation of :class:`~maze.core.env.structured_env_spaces_mixin.StructuredEnvSpacesMixin` interface
        """
        sub_step_id, _ = self.actor_id()
        return self.action_spaces_dict[sub_step_id]

    @property
    @override(StructuredEnvSpacesMixin)
    def observation_space(self) -> gym.spaces.Space:
        """implementation of :class:`~maze.core.env.structured_env_spaces_mixin.StructuredEnvSpacesMixin` interface
        """
        sub_step_id, _ = self.actor_id()
        return self.observation_spaces_dict[sub_step_id]

    @override(LogStatsEnv)
    def get_stats(self, level: LogStatsLevel) -> LogStatsAggregator:
        """Returns the aggregator of the individual episode statistics emitted by the parallel envs.

        :param level: Must be set to `LogStatsLevel.EPOCH`, step or episode statistics are not propagated
        """
        assert level == LogStatsLevel.EPOCH
        return self.epoch_stats

    @override(LogStatsEnv)
    def write_epoch_stats(self):
        """Trigger the epoch statistics generation."""
        self.epoch_stats.reduce()

    @override(LogStatsEnv)
    def clear_epoch_stats(self) -> None:
        """Clear out episode statistics collected so far in this epoch."""
        self.epoch_stats.clear_inputs()

    @override(LogStatsEnv)
    def get_stats_value(self,
                        event: Callable,
                        level: LogStatsLevel,
                        name: Optional[str] = None) -> LogStatsValue:
        """Obtain a single value from the epoch statistics dict.

        :param event: The event interface method of the value in question.
        :param name: The *output_name* of the statistics in case it has been specified in
                     :func:`maze.core.log_stats.event_decorators.define_epoch_stats`
        :param level: Must be set to `LogStatsLevel.EPOCH`, step or episode statistics are not propagated.
        """
        assert level == LogStatsLevel.EPOCH
        return self.epoch_stats.last_stats[(event, name, None)]