Exemple #1
0
def tower_loss(scope):
    """Calculate the total loss on a single tower running the CIFAR model.

  Args:
    scope: unique prefix string identifying the CIFAR tower, e.g. 'tower_0'

  Returns:
     Tensor of shape [] containing the total loss for a batch of data
  """
    # Get images and labels for CIFAR-10.
    images, labels = cifar10.distorted_inputs()

    # Build inference Graph.
    logits = cifar10.inference(images)

    # Build the portion of the Graph calculating the losses. Note that we will
    # assemble the total_loss using a custom function below.
    _ = cifar10.loss(logits, labels)

    # Assemble all of the losses for the current tower only.
    losses = tf.get_collection('losses', scope)

    # Calculate the total loss for the current tower.
    total_loss = tf.add_n(losses, name='total_loss')

    # Attach a scalar summary to all individual losses and the total loss; do the
    # same for the averaged version of the losses.
    for l in losses + [total_loss]:
        # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
        # session. This helps the clarity of presentation on tensorboard.
        loss_name = re.sub('%s_[0-9]*/' % cifar10.TOWER_NAME, '', l.op.name)
        tf.summary.scalar(loss_name, l)

    return total_loss
def tower_loss(scope):
  """Calculate the total loss on a single tower running the CIFAR model.

  Args:
    scope: unique prefix string identifying the CIFAR tower, e.g. 'tower_0'

  Returns:
     Tensor of shape [] containing the total loss for a batch of data
  """
  # Get images and labels for CIFAR-10.
  images, labels = cifar10.distorted_inputs()

  # Build inference Graph.
  logits = cifar10.inference(images)

  # Build the portion of the Graph calculating the losses. Note that we will
  # assemble the total_loss using a custom function below.
  _ = cifar10.loss(logits, labels)

  # Assemble all of the losses for the current tower only.
  losses = tf.get_collection('losses', scope)

  # Calculate the total loss for the current tower.
  total_loss = tf.add_n(losses, name='total_loss')

  # Compute the moving average of all individual losses and the total loss.
  loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
  loss_averages_op = loss_averages.apply(losses + [total_loss])

  # Attach a scalar summary to all individual losses and the total loss; do the
  # same for the averaged version of the losses.
  for l in losses + [total_loss]:
    # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
    # session. This helps the clarity of presentation on tensorboard.
    loss_name = re.sub('%s_[0-9]*/' % cifar10.TOWER_NAME, '', l.op.name)
    # Name each loss as '(raw)' and name the moving average version of the loss
    # as the original loss name.
    tf.scalar_summary(loss_name +' (raw)', l)
    tf.scalar_summary(loss_name, loss_averages.average(l))

  with tf.control_dependencies([loss_averages_op]):
    total_loss = tf.identity(total_loss)
  return total_loss
def train(retrain=False, retrain_list=None):
    """Train CIFAR-10 for a number of steps."""
    with tf.Graph().as_default():
        global_step = tf.Variable(0, trainable=False)

        # Get images and labels for CIFAR-10.
        images, labels = cifar10.distorted_inputs()

        # Build a Graph that computes the logits predictions from the
        # inference model.
        logits = cifar10.inference(images)

        # Calculate loss.
        loss = cifar10.loss(logits, labels)

        # Build a Graph that trains the model with one batch of examples and
        # updates the model parameters.
        if not retrain:
            train_op = cifar10.train(loss, global_step)
        else:
            if retrain_count == 1:
                train_op = cifar10.train(loss, global_step, ["softmax_linear"])
            else:
                train_op = cifar10.train(loss, global_step,
                                         ["softmax_linear", "local4"])

        # Create a saver.
        saver = tf.train.Saver(tf.all_variables())

        # Build the summary operation based on the TF collection of Summaries.
        summary_op = tf.merge_all_summaries()

        ### RETRAINING START

        if FLAGS.retrain:
            if FLAGS.debug:
                print(
                    "GLOBAL ============================================================================="
                )
                for v in tf.all_variables():
                    print(v.name)
                print(
                    "TRAINABLE ============================================================================="
                )
                for v in tf.trainable_variables():
                    print(v.name)
                print(
                    "MOVING AVERAGES ============================================================================="
                )
                for v in tf.moving_average_variables():
                    print(v.name)
            variables_to_restore = [
                v for v in tf.global_variables()
                if not v.name.split('/')[0] in retrain_list
            ]
            variables_to_initialize = [
                v for v in tf.global_variables()
                if v.name.split('/')[0] in retrain_list
            ]
            if FLAGS.debug:
                print(
                    "RESTORE ============================================================================="
                )
                for v in variables_to_restore:
                    print(v.name)
                print(
                    "INITIALIZE ============================================================================="
                )
                for v in variables_to_initialize:
                    print(v.name)
            saver_retrain = tf.train.Saver(variables_to_restore)
            ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir)
            if not (ckpt and ckpt.model_checkpoint_path):
                print('Yikes! No checkpoint file found at %s to retrain :-(' %
                      (FLAGS.checkpoint_dir))
                return
            # Build an initialization operation to run below.
            init = tf.variables_initializer(variables_to_initialize)
        else:
            # Build an initialization operation to run below.
            init = tf.initialize_all_variables()

        # Start running operations on the Graph.
        sess = tf.Session(config=tf.ConfigProto(
            log_device_placement=FLAGS.log_device_placement))

        if FLAGS.retrain:
            # Restores from checkpoint
            saver_retrain.restore(sess, ckpt.model_checkpoint_path)

        sess.run(init)

        # Start the queue runners.
        tf.train.start_queue_runners(sess=sess)

        summary_writer = tf.train.SummaryWriter(FLAGS.train_dir, sess.graph)

        if FLAGS.print_params:
            print(tf.all_variables()[2].name)
            print(tf.all_variables()[2].eval(session=sess))
            print(tf.all_variables()[9].name)
            print(tf.all_variables()[9].eval(session=sess))
            print(tf.all_variables()[10].name)
            print(tf.all_variables()[10].eval(session=sess))
            print("-------------------------------------------")

        for step in xrange(FLAGS.max_steps):
            start_time = time.time()
            _, loss_value = sess.run([train_op, loss])
            duration = time.time() - start_time

            assert not np.isnan(loss_value), 'Model diverged with loss = NaN'

            if step % 10 == 0:
                num_examples_per_step = FLAGS.batch_size
                examples_per_sec = num_examples_per_step / duration
                sec_per_batch = float(duration)

                format_str = (
                    '%s: step %d, loss = %.2f (%.1f examples/sec; %.3f '
                    'sec/batch)')
                print(format_str % (datetime.now(), step, loss_value,
                                    examples_per_sec, sec_per_batch))
                if FLAGS.print_params:
                    print(tf.all_variables()[2].name)
                    print(tf.all_variables()[2].eval(session=sess))
                    print(tf.all_variables()[9].name)
                    print(tf.all_variables()[9].eval(session=sess))
                    print(tf.all_variables()[10].name)
                    print(tf.all_variables()[10].eval(session=sess))
                    print("-------------------------------------------")
            if step % 100 == 0:
                summary_str = sess.run(summary_op)
                summary_writer.add_summary(summary_str, step)

            # Save the model checkpoint periodically.
            if step % 1000 == 0 or (step + 1) == FLAGS.max_steps:
                checkpoint_path = os.path.join(FLAGS.train_dir, 'model.ckpt')
                saver.save(sess, checkpoint_path, global_step=step)
Exemple #4
0
def train():
    """Train CIFAR-10 for a number of steps."""
    with tf.Graph().as_default():
        global_step = tf.Variable(0, trainable=False)

        # Get images and labels for CIFAR-10.
        images, labels = cifar10.distorted_inputs()

        # Build a Graph that computes the logits predictions from the
        # inference model.
        logits = cifar10.inference(images)

        # Calculate loss.
        loss = cifar10.loss(logits, labels)

        # Build a Graph that trains the model with one batch of examples and
        # updates the model parameters.
        train_op = cifar10.train(loss, global_step)

        # Create a saver.
        saver = tf.train.Saver(tf.all_variables())

        # Build the summary operation based on the TF collection of Summaries.
        summary_op = tf.merge_all_summaries()

        # Build an initialization operation to run below.
        init = tf.initialize_all_variables()

        # Start running operations on the Graph.
        sess = tf.Session(config=tf.ConfigProto(
            log_device_placement=FLAGS.log_device_placement))
        sess.run(init)

        # Start the queue runners.
        tf.train.start_queue_runners(sess=sess)

        summary_writer = tf.train.SummaryWriter(FLAGS.train_dir, sess.graph)

        for step in xrange(FLAGS.max_steps):
            start_time = time.time()
            _, loss_value = sess.run([train_op, loss])
            duration = time.time() - start_time

            assert not np.isnan(loss_value), 'Model diverged with loss = NaN'

            if step % 10 == 0:
                num_examples_per_step = FLAGS.batch_size
                examples_per_sec = num_examples_per_step / duration
                sec_per_batch = float(duration)

                format_str = (
                    '%s: step %d, loss = %.2f (%.1f examples/sec; %.3f '
                    'sec/batch)')
                print(format_str % (datetime.now(), step, loss_value,
                                    examples_per_sec, sec_per_batch))

            if step % 100 == 0:
                summary_str = sess.run(summary_op)
                summary_writer.add_summary(summary_str, step)

            # Save the model checkpoint periodically.
            if step % 1000 == 0 or (step + 1) == FLAGS.max_steps:
                checkpoint_path = os.path.join(FLAGS.train_dir, 'model.ckpt')
                saver.save(sess, checkpoint_path, global_step=step)