Exemple #1
0
def setup_model(opa=False, dataset='imagenet', model_size='SMALL'):
    seed = 42
    restart_from = 50
    n_epochs = 100
    pretrained = False
    n_gpus = 1
    use_group_norm = False
    shine = False
    fpn = False
    adjoint_broyden = True
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    try:
        torch.multiprocessing.set_start_method('spawn')
    except RuntimeError:
        pass
    args = update_config_w_args(
        n_epochs=n_epochs,
        pretrained=pretrained,
        n_gpus=n_gpus,
        dataset=dataset,
        model_size=model_size,
        use_group_norm=use_group_norm,
    )
    torch.set_default_tensor_type('torch.cuda.FloatTensor')

    logger, final_output_dir, tb_log_dir = create_logger(
        config,
        args.cfg,
        'train',
        shine=shine,
        fpn=fpn,
        seed=seed,
        use_group_norm=use_group_norm,
        adjoint_broyden=adjoint_broyden,
        opa=True,
    )

    model = eval('models.' + config.MODEL.NAME + '.get_cls_net')(
        config,
        shine=shine,
        fpn=fpn,
        gradient_correl=False,
        gradient_ratio=False,
        adjoint_broyden=adjoint_broyden,
        opa=opa,
    ).cuda()

    resume_file = f'checkpoint_{restart_from}.pth.tar'
    model_state_file = os.path.join(final_output_dir, resume_file)
    checkpoint = torch.load(model_state_file)
    model.load_state_dict(checkpoint['state_dict'])

    return model
Exemple #2
0
def evaluate_classifier(
    n_gpus=1,
    dataset='imagenet',
    model_size='SMALL',
    shine=False,
    fpn=False,
    refine=False,
    n_refine=None,
    fallback=False,
    n_samples=None,
    seed=0,
    adjoint_broyden=False,
    opa=False,
    use_group_norm=False,
    check_contract=False,
    n_iter=20,
):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    args = update_config_w_args(
        n_gpus=n_gpus,
        dataset=dataset,
        model_size=model_size,
        use_group_norm=use_group_norm,
    )

    logger, final_output_dir, tb_log_dir = create_logger(
        config,
        args.cfg,
        'valid',
        shine=shine,
        fpn=fpn,
        seed=seed,
        use_group_norm=use_group_norm,
        adjoint_broyden=adjoint_broyden,
        opa=opa,
        refine=refine,
        n_refine=n_refine,
        fallback=fallback,
    )

    logger.info(pprint.pformat(args))
    logger.info(pprint.pformat(config))

    # cudnn related setting
    cudnn.benchmark = config.CUDNN.BENCHMARK
    torch.backends.cudnn.deterministic = config.CUDNN.DETERMINISTIC
    torch.backends.cudnn.enabled = config.CUDNN.ENABLED

    model = eval('models.' + config.MODEL.NAME + '.get_cls_net')(
        config,
        shine=shine,
        fpn=fpn,
        refine=refine,
        fallback=fallback,
        adjoint_broyden=adjoint_broyden)

    dump_input = torch.rand(
        (1, 3, config.MODEL.IMAGE_SIZE[1], config.MODEL.IMAGE_SIZE[0]))
    logger.info(get_model_summary(model, dump_input))

    if config.TEST.MODEL_FILE:
        logger.info('=> loading model from {}'.format(config.TEST.MODEL_FILE))
        model.load_state_dict(torch.load(config.TEST.MODEL_FILE))
    else:
        model_state_file = os.path.join(final_output_dir,
                                        'final_state.pth.tar')
        logger.info('=> loading model from {}'.format(model_state_file))
        model.load_state_dict(torch.load(model_state_file))

    gpus = list(config.GPUS)
    model = torch.nn.DataParallel(model, device_ids=gpus).cuda()

    # define loss function (criterion) and optimizer
    criterion = torch.nn.CrossEntropyLoss().cuda()

    # Data loading code
    dataset_name = config.DATASET.DATASET

    if dataset_name == 'imagenet':
        valdir = os.path.join(config.DATASET.ROOT + '/images',
                              config.DATASET.TEST_SET)
        normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                         std=[0.229, 0.224, 0.225])
        transform_valid = transforms.Compose([
            transforms.Resize(int(config.MODEL.IMAGE_SIZE[0] / 0.875)),
            transforms.CenterCrop(config.MODEL.IMAGE_SIZE[0]),
            transforms.ToTensor(),
            normalize,
        ])
        valid_dataset = datasets.ImageFolder(valdir, transform_valid)
    else:
        assert dataset_name == "cifar10", "Only CIFAR-10 is supported at this phase"
        normalize = transforms.Normalize((0.4914, 0.4822, 0.4465),
                                         (0.2023, 0.1994, 0.2010))
        transform_valid = transforms.Compose([
            transforms.ToTensor(),
            normalize,
        ])
        valid_dataset = datasets.CIFAR10(root=f'{config.DATASET.ROOT}',
                                         train=False,
                                         download=True,
                                         transform=transform_valid)

    valid_loader = torch.utils.data.DataLoader(
        valid_dataset,
        batch_size=config.TEST.BATCH_SIZE_PER_GPU *
        len(gpus) if not check_contract else 1,
        shuffle=False,
        num_workers=config.WORKERS,
        pin_memory=True)

    # evaluate on validation set
    if not check_contract:
        return 'top1', validate(
            config,
            valid_loader,
            model,
            criterion,
            None,
            None,
            final_output_dir,
            tb_log_dir,
            None,
        ).cpu().numpy()
    else:
        return 'maxeigen', validate_contractivity(
            valid_loader,
            model.module.cuda(),
            n_iter=n_iter,
        ).cpu().numpy()