Exemple #1
0
    def on_run(self):

        # Build Workflow
        wf = Workflow(project_dir='./loop_workflow')
        wf.task_runner = self

        # Task 1: Task that will provide an array of values that will be
        #         iterated over. Setting output_format=mol2 directly as input
        #         to this task is to demonstrate that parameters passed to the
        #         LoopTask will be forwarded to the mapped workflows created by
        #         the LoopTask. Equally so for steps=100 illustrating that input
        #         of steps in the workflow can obtained from tasks outside of
        #         the loop
        t1 = wf.add_task('Array provider')
        t1.set_input(output_format='mol2', steps=100)

        # Task 2: Add loop task. The 'mapper_arg' defines the parameter name in
        #         the input that holds an iterable of input values to iterate
        #         over. The 'loop_end_task' is required and defines the task
        #         that 'closes' the loop and collects all results.
        t2 = wf.add_task('Loop',
                         task_type='LoopTask',
                         mapper_arg='smiles',
                         loop_end_task='Collector')
        wf.connect_task(t1.nid, t2.nid)

        # Task 3: Convert SMILES to mol2
        # Convert ligand to mol2 format irrespective of input format.
        t3 = wf.add_task('Ligand conversion',
                         task_type='WampTask',
                         uri='mdgroup.mdstudio_structures.endpoint.convert')
        wf.connect_task(t2.nid, t3.nid, smiles='mol')

        # Task 4: Convert mol2 to 3D mol2 irrespective if input is 1D/2D or 3D
        #         mol2 If 'output_format' is not specified it is deduced from
        #         the input wich is mol2 in this case. There are circumstances
        #         where conversion to 3D fails, retry upto 3 times.
        t4 = wf.add_task('Make_3D',
                         task_type='WampTask',
                         uri='mdgroup.mdstudio_structures.endpoint.make3d',
                         retry_count=3)
        wf.connect_task(t3.nid, t4.nid, 'mol')
        wf.connect_task(t1.nid, t4.nid, 'steps')

        # Task 5: Empty task that server as a collector for all results
        #         obtained during iteration.
        t5 = wf.add_task('Collector')
        wf.connect_task(t4.nid, t5.nid, 'mol')

        # Set the array of input SMILES string to task 1
        wf.input(t1.nid,
                 smiles=[
                     'O1[C@@H](CCC1=O)CCC',
                     'C[C@]12CC[C@H]3[C@@H](CC=C4CCCC[C@]34CO)[C@@H]1CCC2=O',
                     'CC12CCC3C(CC=C4C=CCCC34C)C1CCC2=O'
                 ])

        wf.run()
        while wf.is_running:
            yield sleep(1)
Exemple #2
0
    def on_run(self):
        """
        When the microservice has successfully registered with the broker the
        on_run method is the first method to be called.
        We are using this method now to run our example workflow.
        """

        # Workflow constants, these will be saved as part of the workflow
        # specification
        ligand_format = 'smi'
        pH = 7.4
        protein_file = os.path.abspath('protein.mol2')
        protein_binding_center = [4.9264, 19.0796, 21.9892]

        # Build Workflow
        wf = Workflow(description='MDStudio WAMP workflow')

        # Task 1: convert the SMILES string to mol2 format (2D).
        # Add a task using the 'add_task' method always defining:
        # an administrative title of the task and the task type here a WampTask
        # because we are calling an microservice endpoint defined by uri.
        # 'store_output' is True by default and stores the task input/output to disk.
        t1 = wf.add_task('Format_conversion',
                         task_type='WampTask',
                         uri='mdgroup.mdstudio_structures.endpoint.convert')

        # Use 'set_input' do define the input to a task. As we are now building
        # a workflow specification these will be task constants but the same
        # method will be used later on to define specific input when using the
        # workflow specification for a ligand.
        t1.set_input(output_format='mol2')

        # Task 2: Covert mol2 to 3D mol2 irrespective if input is 1D/2D or 3D mol2
        # This particular 3D conversion routine is known to fail sometimes but by
        # setting retry_count to 3 the workflow manager will retry 3 times before
        # failing.
        t2 = wf.add_task('Make_3D',
                         task_type='WampTask',
                         uri='mdgroup.mdstudio_structures.endpoint.make3d',
                         retry_count=3)
        t2.set_input(output_format='mol2')

        # Use 'connect_task' to connect t1 to t2 using their unique identifiers
        # (nid). In addition we can specify the parameters for task 1 we wish to
        # use as input to task 2 as additional argument or keyword arguments to
        # the functions. A keyword argument defines a parameter name mapping
        # between the two tasks.
        wf.connect_task(t1.nid, t2.nid, 'mol')

        # Task 3: Adjust ligand protonation state to a given pH if applicable
        t3 = wf.add_task('Add hydrogens',
                         task_type='WampTask',
                         uri='mdgroup.mdstudio_structures.endpoint.addh')
        t3.set_input(output_format='mol2', correctForPH=True, pH=pH)
        wf.connect_task(t2.nid, t3.nid, 'mol')

        # Task 4: Get the formal charge for the protonated mol2 to use as input
        # for ACPYPE or ATB
        # Here store_output equals False which will keep all output in memory and
        # finally as part of the stored workflow file (*.jgf)
        t4 = wf.add_task('Get charge',
                         task_type='WampTask',
                         uri='mdgroup.mdstudio_structures.endpoint.info',
                         store_output=False)
        t4.set_input(input_format='mol2')
        wf.connect_task(t3.nid, t4.nid, 'mol')

        # Task 5: Create rotations of the molecule for better sampling
        t5 = wf.add_task('Create 3D rotations',
                         task_type='WampTask',
                         uri='mdgroup.mdstudio_structures.endpoint.rotate')
        t5.set_input(rotations=[[1, 0, 0, 90], [1, 0, 0, -90], [0, 1, 0, 90],
                                [0, 1, 0, -90], [0, 0, 1, 90], [0, 0, 1, -90]])
        wf.connect_task(t3.nid, t5.nid, 'mol')

        # Task 6: Run PLANTS on ligand and protein
        # The 'workdir' argument points to a tmp directory that is shared between
        # the microservice docker image and the host system to store results.
        t6 = wf.add_task('Plants docking',
                         task_type='WampTask',
                         uri='mdgroup.mdstudio_smartcyp.endpoint.docking')
        t6.set_input(cluster_structures=100,
                     bindingsite_center=protein_binding_center,
                     bindingsite_radius=12,
                     protein_file=protein_file,
                     threshold=3.0,
                     base_work_dir='/tmp/mdstudio/mdstudio_smartcyp')

        # Here we pass only the 'mol' parameter from task 5 to task 6 where it is
        # named 'ligand_file'
        wf.connect_task(t5.nid, t6.nid, 'mol', mol='ligand_file')

        # Task 7: Extract cluster medians from output using a custom function.

        # A task of type 'PythonTask' allows to add custom python functions
        # or classes to the workflow. They are defined using the 'custom_func'
        # parameter according to the Python import syntax. The package or file
        # containing the function should be available as part of the PYTHONPATH.
        t7 = wf.add_task('Get cluster medians',
                         task_type='PythonTask',
                         custom_func='workflow_helpers.get_docking_medians')
        wf.connect_task(t6.nid, t7.nid, 'result')

        # Task 8: retrieve median structures
        t8 = wf.add_task(
            'Retrieve median structures',
            task_type='WampTask',
            uri='mdgroup.mdstudio_smartcyp.endpoint.docking_structures')
        t8.set_input(create_ensemble=False)
        wf.connect_task(t7.nid, t8.nid, medians='paths')

        # Save the workflow specification
        wf.save('workflow_spec.jgf')

        # Lets run the workflow specification for a number of ligand SMILES
        # The current microservice instance (self) is passed as task_runner to the workflow
        # it will be used to make calls to other microservice endpoints when task_type equals WampTask.
        wf.task_runner = self

        currdir = os.getcwd()
        for i, ligand in enumerate([
                'O1[C@@H](CCC1=O)CCC',
                'C[C@]12CC[C@H]3[C@@H](CC=C4CCCC[C@]34CO)[C@@H]1CCC2=O',
                'CC12CCC3C(CC=C4C=CCCC34C)C1CCC2=O'
        ],
                                   start=1):
            wf.load('workflow_spec.jgf')
            wf.input(t1.nid,
                     mol={
                         'content': ligand,
                         'path': None,
                         'extension': ligand_format
                     })
            wf.run(project_dir='./ligand-{0}'.format(i))
            while wf.is_running:
                yield sleep(1)

            os.chdir(currdir)