import os from me_biomass import load_model me = load_model.load_me_model(json=True) gene = '' auxotrophy = 'default' source_dir = os.getcwd() + '/media_sims/' if not os.path.isdir(source_dir): os.mkdir(source_dir) for aerobicity in ['aerobic', 'anaerobic']: for source in ["C", "P", "S", "N"]: for r in me.reactions.query('EX_'): if not r.id.startswith('EX_'): continue met = me.metabolites.get_by_id(r.id.replace('EX_', '')) if met.elements.get(source, 0) == 0: print('No %s in %s' % (source, met.id)) continue media = r.id output_file = aerobicity + '_' + source + '_' + media if os.path.exists(os.path.join(source_dir, '%s_sol.json' % output_file)): print(output_file, 'already solved') continue os.system("sbatch edison_submit_job %s %s %s %s %s" % (gene, aerobicity, auxotrophy, media, source))
parser.add_argument('source', help='', type=str) args = parser.parse_args() # pair must be in form of ko1strain1:ko2strain1-ko1strain2:ko2strain2 GENE_ID = args.gene AEROBICITY = args.aerobicity AUXOTROPHY = args.auxotrophy MEDIA = args.media SOURCE = args.source # ************************************************************ # Load and prepare model for simulations here = dirname(abspath(__file__)) model = load_me_model(json=True) if GENE_ID.lower() == 'none': GENE_ID = None if GENE_ID: model.reactions.get_by_id('translation_' + GENE_ID).knock_out() print('loaded model w/ knockout') # Close default source of nutrient if SOURCE == 'N': source_rxn = model.reactions.EX_nh4_e elif SOURCE == 'C': source_rxn = model.reactions.EX_glc__D_e elif SOURCE == 'P': source_rxn = model.reactions.EX_pi_e elif SOURCE == 'S':
from qminospy.me1 import ME_NLP1 import pandas as pd from me_biomass.load_model import load_me_model target_to_flux = {} target_to_shadow = {} target_to_reduced = {} anaerobic = True if anaerobic: suffix = '_anaerobic' else: suffix = '' model = load_me_model() if anaerobic: model.reactions.EX_o2_e.lower_bound = 0 me_nlp = ME_NLP1(model, growth_key='mu') me_nlp.compiled_expressions = me_nlp.compile_expressions() hs = None for source in ["C", "P", "S", "N"]: if source == 'N': source_rxn = model.reactions.EX_nh4_e elif source == 'C': source_rxn = model.reactions.EX_glc__D_e elif source == 'P': source_rxn = model.reactions.EX_pi_e
from qminospy.me1 import ME_NLP1 from copy import deepcopy import pandas as pd import cobra import numpy as np from IPython import embed import cobrame from me_biomass.load_model import load_me_model, currency_met_to_synthesis_rxn me = load_me_model() aas = [ i.replace('_c', '') for i in me.process_data.b2020.amino_acid_count.keys() ] mets = [ 'quln', 'thf', 'thm', 'fad', 'btn', 'hemed', 'fmn', 'nac', 'thmpp', 'nad', 'nadp', '10thf', 'amet', 'chor', 'coa', 'atp', 'ctp', 'gtp', 'utp', 'enter', 'gthrd', 'hemeO', 'malcoa', 'mlthf', 'mobd', 'pheme', 'q8', 'mql8', 'ptrc', 'ribflv', 'sheme', 'spmd', 'succoa', 'udcpdp' ] aas.extend(mets) # Rerun these so that they do not secrete _c -> _e aas.append('default') aux_to_ko = { 'default': [], 'pydxn': ['PDX5PS1', 'PDX5PS2'], # PDX5PS in iJO, but unlumped for ME 'thm': ['THZPSN31'], 'nac': ['ASPO3', 'ASPO4', 'ASPO5', 'ASPO6'],