Exemple #1
0
def run(basedir=None,
        train_file=None,
        valid_file=None,
        dataset_key='tlm',
        embed_type='default',
        d_model=512,
        d_ff=2048,
        d_k=None,
        num_heads=8,
        num_layers=8,
        num_train_workers=4,
        nctx=256,
        file_type='json',
        batch_size=256,
        subword_model_file=None,
        subword_vocab_file=None,
        dropout=0.1,
        ffn_pdrop=0.0,
        layer_drop=0.0,
        lr_scheduler='cosine',
        lr_decay_steps=None,
        lr_decay_rate=None,
        lr_alpha=0.0,
        optim='adamw',
        lr=4.0e-4,
        clip=1.0,
        weight_decay=1.0e-2,
        epochs=32,
        restart_from=None,
        restart_tt=None,
        warmup_steps=10000,
        saves_per_epoch=10,
        mlm=True,
        preprocessed=True,
        rpr_k=[8],
        rpr_value_on=False,
        windowed_ra=False,
        device="cuda",
        distributed=False,
        local_rank=-1,
        extra_tokens=["[CLS]", "[MASK]"],
        do_early_stopping=False,
        model_type='transformer-mlm',
        modules=[],
        ra_type=None,
        transformer_type=None,
        **kwargs):
    if basedir is None:
        basedir = 'lm-{}-bpe-{}'.format(dataset_key, os.getpid())
    logging.basicConfig(
        level=logging.INFO if local_rank in [-1, 0] else logging.WARN)

    for module in modules:
        import_user_module(module)
    num_gpus = get_num_gpus_multiworker()
    distributed = distributed or num_gpus > 1
    logger.info(f"Using {num_gpus} GPUs in this job.")

    do_on_demand_masking = mlm and not preprocessed
    if do_on_demand_masking:
        logger.info(f"On-demand masking is turned on")
    if distributed:
        device, updated_local_rank = init_distributed(local_rank)
        local_rank = updated_local_rank

    if file_type == 'tfrecord':
        reader_type = 'tfrecord'
    elif preprocessed:
        reader_type = 'preprocessed'
    else:
        reader_type = 'lang'
    reader = MultiFileDatasetReader(src_nctx=nctx,
                                    model_file=subword_model_file,
                                    vocab_file=subword_vocab_file,
                                    file_type=file_type,
                                    reader_type=reader_type,
                                    record_keys=['x', 'y'] if mlm else ['x'],
                                    extra_tokens=extra_tokens)

    # This looks a bit funny but the streaming reader ignores our vocab and gives us the one from the subword_model
    # However, we do need to get counts from our dataset for validation so we can calculate the perplexity
    vocab = reader.build_vocab([valid_file])
    # If we are not using chars, then use 'x' for both input and output
    preproc_data = baseline.embeddings.load_embeddings(
        'x',
        dsz=d_model,
        known_vocab=vocab['x'],
        preserve_vocab_indices=True,
        embed_type=embed_type)
    vocabs = preproc_data['vocab']

    os.makedirs(basedir, exist_ok=True)
    # We want to make sure to save our input vocab into the basedir for reuse later
    write_json(vocabs, os.path.join(basedir, 'vocabs.json'))
    embeddings = {'x': preproc_data['embeddings']}
    logger.info("Loaded embeddings")

    train_set = reader.load(train_file, vocabs)
    valid_set = reader.load(valid_file,
                            vocabs,
                            distribute=False,
                            shuffle=False)

    train_loader = DataLoader(train_set,
                              batch_size=batch_size,
                              num_workers=num_train_workers)
    valid_loader = DataLoader(valid_set, batch_size=batch_size)
    logger.info("Loaded datasets")
    logger.info("Using embedding type [%s]", embed_type)

    if 'mlm' in model_type:
        mask_from = vocabs
        vocab_size = len(mask_from)
        mask_value = mask_from.get("[MASK]")
        if mask_value == -1:
            logger.error(
                "We could not find a suitable masking token in the vocab")
            return

    if len(rpr_k) == 0 or rpr_k[0] < 1:
        rpr_k = None
    elif len(rpr_k) == 1:
        rpr_k = None if rpr_k[0] == 0 else rpr_k[0]
    if ra_type != None and ra_type != 'shaw' and rpr_k is not None:
        print(
            f"Relative attention mismatch. You requested {ra_type} with rpr set.  Setting it to 0"
        )
        rpr_k = None

    model = create_lang_model(
        embeddings,
        hsz=d_model,
        nctx=nctx,  # Only for gMLP
        d_ff=d_ff,
        tie_weights=True,
        dropout=dropout,
        gpu=False,
        num_heads=num_heads,
        layers=num_layers,
        rpr_k=rpr_k,
        d_k=d_k,
        ffn_pdrop=ffn_pdrop,
        windowed_ra=windowed_ra,
        rpr_value_on=rpr_value_on,
        layer_drop=layer_drop,
        model_type=model_type,
        ra_type=ra_type,
        transformer_type=transformer_type,
        src_keys=['x'],
        tgt_key='x')
    model.to(device)

    loss_function = model.create_loss()
    loss_function.to(device)

    logger.info("Loaded model and loss")

    steps_per_epoch = len(train_loader) // num_gpus
    update_on = steps_per_epoch // saves_per_epoch
    report_on = max(10, update_on) // 10
    logger.info(
        f"Steps per epoch per GPU: {steps_per_epoch}. Saving checkpoint every {update_on} steps."
    )
    lr_decay = get_lr_decay(lr_scheduler,
                            lr,
                            steps_per_epoch,
                            epochs,
                            logger,
                            decay_steps=lr_decay_steps,
                            decay_rate=lr_decay_rate,
                            alpha=lr_alpha)
    linear_warmup = WarmupLinearSchedulerPyTorch(warmup_steps, lr=lr)
    lr_sched = CompositeLRScheduler(linear_warmup, lr_decay, lr=lr)

    global_step = 0
    start_epoch = 0
    if restart_from:

        if restart_from.endswith('npz'):
            load_tlm_npz(model, restart_from)
        else:
            model.load_state_dict(torch.load(restart_from))
        vec = restart_from.split("-")

        if restart_tt:
            tick_type = restart_tt
        else:
            tick_type = vec[-2]
        step_num = int(vec[-1].split(".")[0])
        if tick_type == 'epoch':
            start_epoch = step_num
            global_step = start_epoch * steps_per_epoch

        elif tick_type == 'step':
            start_epoch = step_num // steps_per_epoch
            global_step = step_num
        else:
            logger.warning(
                f"The previous tick was {step_num} but command-line specifies to ignore, setting to 0"
            )

        logger.info(
            "Restarting from a previous checkpoint %s.\n\tStarting at global_step=%d, epoch=%d",
            restart_from, global_step, start_epoch + 1)

    optimizer = OptimizerManager(model,
                                 global_step,
                                 optim=optim,
                                 lr=lr,
                                 lr_function=lr_sched,
                                 weight_decay=weight_decay)
    logger.info("Model has {:,} parameters".format(
        sum(p.numel() for p in model.parameters() if p.requires_grad)))

    # Prepare model for distributed training if needed
    if distributed:
        # This program assume pure data parallelism, each model is on a single gpu
        # If we wanted to support model and data parallelism we would need to update
        # the selection of gpus based on rank, it would need to select multiple ids
        # based on rank, here we select only a single gpu and use it for input and
        # output.
        model = DistributedDataParallel(model,
                                        device_ids=[device],
                                        output_device=device,
                                        find_unused_parameters=True)
        logger.info("Model located on %s", device)

    model_base = os.path.join(basedir, 'checkpoint')
    steps = global_step
    best_valid_loss = np.inf

    timer = Timer()
    for epoch in range(start_epoch, epochs):
        avg_loss = Average('average_train_loss')
        metrics = {}
        optimizer.zero_grad()
        timer.start()
        model.train()
        train_itr = iter(train_loader)
        for i in range(steps_per_epoch):
            batch = next(train_itr)
            steps += 1
            x, y = batch
            inputs = x.to(device)
            labels = y.to(device)
            if do_on_demand_masking:
                inputs, labels, _ = on_demand_mlm_masking(
                    inputs, labels, mask_value, vocab_size)
            inputs = {'x': inputs}

            labels = labels.contiguous()
            logits = model(inputs, None)[0].contiguous()
            if mlm:
                loss = loss_function(logits, labels)
            else:
                shift_logits = logits[:, -1]
                shift_labels = labels[:, 1:]
                loss = loss_function(shift_logits, shift_labels)
            loss.backward()
            avg_loss.update(loss.item())

            torch.nn.utils.clip_grad_norm_(model.parameters(), clip)
            optimizer.step()
            optimizer.zero_grad()
            if (i + 1) % report_on == 0:
                logging.info(avg_loss)

            if (i + 1) % update_on == 0 and local_rank < 1:
                elapsed = timer.elapsed(True)
                logging.info('elapsed time this epoch %d min', elapsed)
                logging.info('elapsed step time %f steps/min', i / elapsed)
                logging.info('LR: %f', optimizer.current_lr)

                if not do_early_stopping:
                    save_checkpoint(model, model_base, steps, tick_type='step')
                else:
                    valid_token_loss = validate(model, loss_function,
                                                valid_loader, avg_loss, timer,
                                                metrics, do_on_demand_masking,
                                                mlm, mask_value, vocab_size,
                                                device)
                    if valid_token_loss < best_valid_loss:
                        best_valid_loss = valid_token_loss
                        logger.info(
                            f"New best valid loss: {best_valid_loss}. Saving checkpoint..."
                        )
                        save_checkpoint(model,
                                        model_base,
                                        steps,
                                        tick_type='step')
                    model.train()

        if not do_early_stopping:
            _ = validate(model, loss_function, valid_loader, avg_loss, timer,
                         metrics, do_on_demand_masking, mlm, mask_value,
                         vocab_size, device)
            save_checkpoint(model, model_base, epoch, tick_type='epoch')
def run(basedir=None,
        train_file=None,
        valid_file=None,
        dataset_key='paired',
        embed_type='default',
        d_model=512,
        d_ff=2048,
        d_k=None,
        num_heads=8,
        num_layers=8,
        num_train_workers=4,
        nctx=256,
        tgt_nctx=None,
        file_type='json',
        record_keys=['x', 'y'],
        batch_size=256,
        subword_model_file=None,
        subword_vocab_file=None,
        dropout=0.1,
        lr_scheduler='cosine',
        lr_decay_steps=None,
        lr_decay_rate=None,
        lr_alpha=None,
        optim='adamw',
        lr=4.0e-4,
        clip=1.0,
        weight_decay=1.0e-2,
        epochs=32,
        restart_from=None,
        restart_tt=None,
        warmup_steps=10000,
        saves_per_epoch=10,
        layer_drop=0.0,
        reader_type='preprocessed',
        src_begin_tok=[],
        src_end_tok=['<EOS>'],
        tgt_begin_tok=['<GO>'],
        tgt_end_tok=['<EOS>'],
        lower=False,
        rpr_k=[8],
        device='cuda',
        distributed=False,
        local_rank=-1,
        save_npz=False,
        extra_tokens=["[CLS]", "[MASK]"],
        subword_type='bpe',
        label_smoothing=None,
        ra_type=None,
        transformer_type=None,
        **kwargs):
    if basedir is None:
        basedir = f's2s-{reader_type}-paired-{dataset_key}-bpe-{os.getpid()}'
    logging.basicConfig(
        level=logging.INFO if local_rank in [-1, 0] else logging.WARN)
    num_gpus = get_num_gpus_multiworker()
    distributed = distributed or num_gpus > 1
    logger.info(f"Using {num_gpus} GPUs in this job.")
    if distributed:
        device, updated_local_rank = init_distributed(local_rank)
        local_rank = updated_local_rank
    if not tgt_nctx:
        tgt_nctx = nctx
    reader = MultiFileDatasetReader(nctx,
                                    tgt_nctx,
                                    src_begin_tok,
                                    src_end_tok,
                                    tgt_begin_tok,
                                    tgt_end_tok,
                                    subword_model_file,
                                    subword_vocab_file,
                                    file_type,
                                    reader_type=reader_type,
                                    record_keys=record_keys,
                                    lower=lower,
                                    extra_tokens=extra_tokens,
                                    subword_type=subword_type)
    vocab = reader.build_vocab()
    # If we are not using chars, then use 'x' for both input and output
    preproc_data = baseline.embeddings.load_embeddings(
        'x',
        dsz=d_model,
        known_vocab=vocab['x'],
        preserve_vocab_indices=True,
        embed_type=embed_type)
    vocabs = preproc_data['vocab']
    os.makedirs(basedir, exist_ok=True)
    # We want to make sure to save our input vocab into the basedir for reuse later
    write_json(vocabs, os.path.join(basedir, 'vocabs.json'))
    embeddings = preproc_data['embeddings']
    logger.info("Loaded embeddings")
    train_set = reader.load(train_file, vocabs)
    valid_set = reader.load(valid_file,
                            vocabs,
                            distribute=False,
                            shuffle=False)
    train_loader = DataLoader(train_set,
                              batch_size=batch_size,
                              num_workers=num_train_workers)
    valid_loader = DataLoader(valid_set, batch_size=batch_size)
    logger.info("Loaded datasets")
    logger.info("Using embedding type [%s]", embed_type)
    if len(rpr_k) == 0 or rpr_k[0] < 1:
        rpr_k = None
    elif len(rpr_k) == 1:
        rpr_k = rpr_k[0]
    else:
        rpr_k = rpr_k

    hps = {
        "dsz": d_model,
        "hsz": d_model,
        "d_ff": d_ff,
        "dropout": dropout,
        "num_heads": num_heads,
        "layers": num_layers,
        "encoder_type": "transformer",
        "decoder_type": "transformer",
        "src_lengths_key": "x_lengths",
        "d_k": d_k,
        "layer_drop": layer_drop,
        "rpr_k": rpr_k,
        "ra_type": ra_type,
        "transformer_type": transformer_type
    }
    model = TiedEmbeddingsSeq2SeqModel({'x': embeddings}, None, **hps)
    model.to(device)

    loss_function = model.create_loss(label_smoothing=label_smoothing)
    loss_function.to(device)
    logger.info("Created model and loss")
    steps_per_epoch = len(train_loader) // num_gpus
    valid_steps = len(valid_loader)
    update_on = steps_per_epoch // saves_per_epoch
    report_on = max(10, update_on) // 10
    logger.info(
        f"Steps per epoch per GPU: {steps_per_epoch}. Saving checkpoint every {update_on} steps."
    )
    lr_decay = get_lr_decay(lr_scheduler,
                            lr,
                            steps_per_epoch,
                            epochs,
                            logger,
                            decay_steps=lr_decay_steps,
                            decay_rate=lr_decay_rate,
                            alpha=lr_alpha)
    linear_warmup = WarmupLinearSchedulerPyTorch(warmup_steps, lr=lr)
    lr_sched = CompositeLRScheduler(linear_warmup, lr_decay, lr=lr)
    global_step = 0
    start_epoch = 0
    if restart_from:

        global_step, start_epoch = reload_from_checkpoint(
            restart_from, restart_tt, model, steps_per_epoch)
        logger.info(
            "Restarting from a previous checkpoint %s.\n\tStarting at global_step=%d, epoch=%d",
            restart_from, global_step, start_epoch + 1)
    optimizer = OptimizerManager(model,
                                 global_step,
                                 optim=optim,
                                 lr=lr,
                                 lr_function=lr_sched,
                                 weight_decay=weight_decay)
    logger.info("Model has {:,} parameters".format(
        sum(p.numel() for p in model.parameters() if p.requires_grad)))
    # Prepare model for distributed training if needed
    if distributed:
        model = DistributedDataParallel(model,
                                        device_ids=[device],
                                        output_device=device)
        logger.info("Model located on %d", local_rank)
    model_base = os.path.join(basedir, 'checkpoint')
    steps = global_step
    timer = Timer()
    for epoch in range(start_epoch, epochs):
        avg_loss = Average('average_train_loss')
        metrics = {}
        optimizer.zero_grad()
        timer.start()
        model.train()
        train_itr = iter(train_loader)
        for i in range(steps_per_epoch):
            batch = next(train_itr)
            steps += 1

            x, y = batch
            loss = run_step(x, y, model, loss_function, distributed)
            loss.backward()
            avg_loss.update(loss.item())

            torch.nn.utils.clip_grad_norm_(model.parameters(), clip)
            optimizer.step()
            optimizer.zero_grad()
            if (i + 1) % report_on == 0:
                logging.info(avg_loss)
            if (i + 1) % update_on == 0 and local_rank < 1:
                elapsed = timer.elapsed(True)
                logging.info('elapsed time this epoch %d min', elapsed)
                logging.info('elapsed step time %f steps/min', i / elapsed)
                logging.info('LR: %f', optimizer.current_lr)
                save_checkpoint(model,
                                model_base,
                                steps,
                                tick_type='step',
                                save_npz=save_npz)

        # How much time elapsed in minutes
        elapsed = timer.elapsed(True)
        train_avg_loss = avg_loss.avg
        # This is the average training token-level loss across all machines
        # This is the token-level training perplexity
        metrics['train_elapsed_min'] = elapsed
        metrics['average_train_loss'] = train_avg_loss
        if local_rank < 1:
            avg_valid_loss = Average('average_valid_loss')
            timer.start()
            model.eval()
            valid_itr = iter(valid_loader)
            for j in range(valid_steps):
                with torch.no_grad():
                    batch = next(valid_itr)
                    x, y = batch
                    loss = run_step(x, y, model, loss_function, distributed)
                avg_valid_loss.update(loss.item())

            valid_avg_loss = avg_valid_loss.avg

            elapsed = timer.elapsed(True)
            metrics['valid_elapsed_min'] = elapsed

            metrics['average_valid_loss'] = valid_avg_loss
            logger.info(metrics)
            save_checkpoint(model,
                            model_base,
                            epoch,
                            tick_type='epoch',
                            save_npz=save_npz)
Exemple #3
0
def train():
    parser = ArgumentParser()
    parser.add_argument("--basedir", type=str)
    parser.add_argument("--train_file",
                        type=str,
                        help='Optional file path to use for train file')
    parser.add_argument("--valid_file",
                        type=str,
                        help='Optional file path to use for valid file')
    parser.add_argument("--preprocessed",
                        type=str2bool,
                        default=True,
                        help="Has the data already been preprocessed?")

    parser.add_argument("--gen_d_model",
                        type=int,
                        default=256,
                        help="Model dimension (and embedding dsz)")
    parser.add_argument("--gen_d_ff",
                        type=int,
                        default=1024,
                        help="FFN dimension")
    parser.add_argument(
        "--gen_d_k",
        type=int,
        default=None,
        help="Dimension per head.  Use if num_heads=1 to reduce dims")
    parser.add_argument("--gen_num_heads",
                        type=int,
                        default=8,
                        help="Number of heads")
    parser.add_argument("--gen_num_layers",
                        type=int,
                        default=8,
                        help="Number of layers")
    parser.add_argument("--gen_dropout",
                        type=float,
                        default=0.1,
                        help="Dropout")
    parser.add_argument(
        '--gen_rpr_k',
        help=
        'Relative attention positional sizes pass 0 if you dont want relative attention',
        type=int,
        default=[8],
        nargs='+')

    parser.add_argument("--discrim_d_model",
                        type=int,
                        default=512,
                        help="Model dimension (and embedding dsz)")
    parser.add_argument("--discrim_d_ff",
                        type=int,
                        default=2048,
                        help="FFN dimension")
    parser.add_argument(
        "--discrim_d_k",
        type=int,
        default=None,
        help="Dimension per head.  Use if num_heads=1 to reduce dims")
    parser.add_argument("--discrim_num_heads",
                        type=int,
                        default=8,
                        help="Number of heads")
    parser.add_argument("--discrim_num_layers",
                        type=int,
                        default=8,
                        help="Number of layers")
    parser.add_argument("--discrim_dropout",
                        type=float,
                        default=0.1,
                        help="Dropout")
    parser.add_argument(
        '--discrim_rpr_k',
        help=
        'Relative attention positional sizes pass 0 if you dont want relative attention',
        type=int,
        default=[8],
        nargs='+')

    parser.add_argument("--num_train_workers",
                        type=int,
                        default=4,
                        help="Number train workers")
    parser.add_argument(
        "--nctx",
        type=int,
        default=256,
        help="Max context length (for both encoder and decoder)")
    parser.add_argument(
        "--embed_type",
        type=str,
        default='default',
        choices=["default", "positional", "learned-positional"],
        help="register label of the embeddings")
    parser.add_argument(
        "--pattern",
        default='*.json',
        help=
        "Glob pattern for files, defaults to *.json if preprocessed, *.txt otherwise"
    )
    parser.add_argument("--batch_size",
                        type=int,
                        default=256,
                        help="Batch Size")
    parser.add_argument("--dataset_key",
                        default="reddit",
                        help="dataset key for basedir")
    parser.add_argument("--subword_model_file", type=str, required=True)
    parser.add_argument("--subword_vocab_file", type=str, required=True)
    parser.add_argument("--lr_scheduler",
                        type=str,
                        default='cosine',
                        help="The type of learning rate decay scheduler")
    parser.add_argument("--lr_decay_steps",
                        type=int,
                        help="decay steps of lr scheduler")
    parser.add_argument("--lr_decay_rate",
                        type=float,
                        help="decay rate of lr scheduler")
    parser.add_argument("--lr_alpha",
                        type=float,
                        help="parameter alpha for cosine decay scheduler")
    parser.add_argument("--optim",
                        default="adam",
                        type=str,
                        help="Optimizer to use (defaults to adam)")
    parser.add_argument("--lr",
                        type=float,
                        default=4.0e-4,
                        help="Learning rate")
    parser.add_argument("--clip",
                        type=float,
                        default=1.0,
                        help="Clipping gradient norm")
    parser.add_argument("--gen_loss_scale",
                        type=float,
                        default=50.0,
                        help="Scaling for loss function")
    parser.add_argument("--weight_decay",
                        type=float,
                        default=0.0,
                        help="Weight decay")
    parser.add_argument("--epochs",
                        type=int,
                        default=32,
                        help="Num training epochs")
    parser.add_argument(
        "--restart_from",
        type=str,
        help=
        "Option allows you to restart from the latest checkpoint in a directory"
    )
    parser.add_argument(
        "--restart_tt",
        type=str,
        choices=['step', 'epoch'],
        default='step',
        help="Optional param for legacy checkpoints (step|epoch)")
    parser.add_argument("--warmup_steps",
                        type=int,
                        default=10000,
                        help="Num warmup steps")
    parser.add_argument("--saves_per_epoch",
                        type=int,
                        default=100,
                        help="The number of checkpoints to save per epoch")
    parser.add_argument("--print",
                        type=str2bool,
                        default=True,
                        help="Print some output")
    parser.add_argument("--device",
                        type=str,
                        default="cuda" if torch.cuda.is_available() else "cpu",
                        help="Device (cuda or cpu)")
    parser.add_argument("--distributed",
                        type=str2bool,
                        default=False,
                        help="Are we doing distributed training?")
    parser.add_argument(
        "--local_rank",
        type=int,
        default=-1,
        help=
        "Local rank for distributed training (-1 means use the environment variables to find)"
    )

    args = parser.parse_args()

    if args.train_file and not args.valid_file:
        logger.error(
            "If you provide a train_file, you must provide a valid_file")
        return

    if not args.train_file and args.valid_file:
        logger.error(
            "If you provide a valid_file, you must also provide a train_file")
        return

    if args.basedir is None:
        args.basedir = 'gd-{}-bpe-{}'.format(args.dataset_key, os.getpid())
    logging.basicConfig(
        format="%(name)s: %(levelname)s: %(message)s",
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
    num_gpus = get_num_gpus_multiworker()
    args.distributed = args.distributed or num_gpus > 1
    logger.info(f"Using {num_gpus} GPUs in this job.")

    if args.distributed:
        args.device, args.local_rank = init_distributed(args.local_rank)

    if not args.preprocessed:
        reader_type = "lang"
        args.pattern = "*.txt"
    else:
        reader_type = "preprocessed"
    reader = MultiFileDatasetReader(args.nctx,
                                    args.subword_model_file,
                                    args.subword_vocab_file,
                                    args.pattern,
                                    reader_type=reader_type)
    #  just return the vocab from the BPE vectorizer
    vocab = reader.build_vocab([])
    gen_embed = baseline.embeddings.load_embeddings('x',
                                                    dsz=args.gen_d_model,
                                                    known_vocab=vocab['x'],
                                                    embed_type=args.embed_type)
    vocabs = gen_embed['vocab']
    index2word = revlut(vocabs)
    discrim_embed = baseline.embeddings.load_embeddings(
        'x',
        dsz=args.discrim_d_model,
        known_vocab=vocab['x'],
        embed_type=args.embed_type)

    os.makedirs(args.basedir, exist_ok=True)
    # We want to make sure to save our input vocab into the basedir for reuse later
    write_json(vocabs, os.path.join(args.basedir, 'vocabs.json'))
    gen_embeddings = {'x': gen_embed['embeddings']}
    discrim_embeddings = {'x': discrim_embed['embeddings']}
    logger.info("Loaded embeddings")

    train_set = reader.load(args.train_file, vocabs)
    valid_set = reader.load(args.valid_file, vocabs)
    train_loader = DataLoader(train_set,
                              batch_size=args.batch_size,
                              num_workers=args.num_train_workers)
    valid_loader = DataLoader(valid_set, batch_size=args.batch_size)
    train_steps_per_epoch = len(train_loader) // (args.batch_size * num_gpus)
    valid_steps_per_epoch = len(valid_loader) // args.batch_size
    logger.info("Loaded datasets")
    logger.info("Using embedding type [%s]", args.embed_type)

    mask_value = vocabs.get("[MASK]", vocabs.get("<MASK>", -1))
    if mask_value == -1:
        logger.error("We could not find a suitable masking token in the vocab")
        return
    os.makedirs(args.basedir, exist_ok=True)
    vocab_size = len(vocabs)

    if len(args.gen_rpr_k) == 0 or args.gen_rpr_k[0] < 1:
        gen_rpr_k = None
    elif len(args.gen_rpr_k) == 1:
        gen_rpr_k = args.gen_rpr_k[0]
    else:
        gen_rpr_k = args.gen_rpr_k

    if len(args.gen_rpr_k) == 0 or args.discrim_rpr_k[0] < 1:
        discrim_rpr_k = None
    elif len(args.discrim_rpr_k) == 1:
        discrim_rpr_k = args.discrim_rpr_k[0]
    else:
        discrim_rpr_k = args.discrim_rpr_k

    gen_model = TransformerMaskedLanguageModel.create(
        gen_embeddings,
        hsz=args.gen_d_model,
        d_ff=args.gen_d_ff,
        tie_weights=True,
        dropout=args.gen_dropout,
        num_heads=args.gen_num_heads,
        layers=args.gen_num_layers,
        rpr_k=gen_rpr_k,
        d_k=args.gen_d_k,
        src_keys=['x'],
        tgt_key='x')
    discrim_model = TransformerDiscriminator(discrim_embeddings,
                                             d_model=args.discrim_d_model,
                                             d_ff=args.discrim_d_ff,
                                             dropout=args.discrim_dropout,
                                             num_heads=args.discrim_num_heads,
                                             layers=args.discrim_num_layers,
                                             activation='gelu',
                                             layer_norm_eps=1.0e-12,
                                             rpr_k=discrim_rpr_k,
                                             d_k=args.discrim_d_k)
    gen_model.to(args.device)
    gen_loss_fn = gen_model.create_loss()

    discrim_model.to(args.device)
    discrim_loss_fn = discrim_model.create_loss()
    logger.info("Loaded model and loss")

    update_on = train_steps_per_epoch // args.saves_per_epoch
    report_on = update_on // 10
    logger.info(
        f"Steps per epoch per GPU: {train_steps_per_epoch}. Saving checkpoint every {update_on} steps."
    )
    lr_decay = get_lr_decay(args.lr_scheduler,
                            args.lr,
                            train_steps_per_epoch,
                            args.epochs,
                            logger,
                            decay_steps=args.lr_decay_steps,
                            decay_rate=args.lr_decay_rate,
                            alpha=args.lr_alpha)
    linear_warmup = WarmupLinearSchedulerPyTorch(args.warmup_steps, lr=args.lr)
    lr_sched = CompositeLRScheduler(linear_warmup, lr_decay, lr=args.lr)

    global_step = 0
    start_epoch = 0
    if args.restart_from:
        if not os.path.isdir(args.restart_from):
            raise Exception(
                f"Cannot restart from {args.restart_from}, directory not found"
            )
        tick_type = args.restart_tt
        discrim_latest, step_num = find_latest_checkpoint(
            args.restart_from, wildcard=f'checkpoint-discrim-{tick_type}')
        gen_latest, _ = find_latest_checkpoint(
            args.restart_from, wildcard=f'checkpoint-gen-{tick_type}')
        discrim_model.load_state_dict(torch.load(discrim_latest))
        gen_model.load_state_dict(torch.load(gen_latest))
        if tick_type == 'step':
            start_epoch = step_num // train_steps_per_epoch
            global_step = step_num
        else:
            start_epoch = step_num
            global_step = train_steps_per_epoch * start_epoch

    parameters = list(discrim_model.parameters()) + list(
        gen_model.parameters())
    optz = OptimizerManager(parameters,
                            global_step,
                            optim=args.optim,
                            lr=args.lr,
                            lr_function=lr_sched,
                            weight_decay=args.weight_decay)
    logger.info("Generator has {:,} parameters".format(
        sum(p.numel() for p in gen_model.parameters() if p.requires_grad)))
    logger.info("Discriminator has {:,} parameters".format(
        sum(p.numel() for p in discrim_model.parameters() if p.requires_grad)))
    # Prepare model for distributed training if needed
    if args.distributed:
        # This program assume pure data parallelism, each model is on a single gpu
        # If we wanted to support model and data parallelism we would need to update
        # the selection of gpus based on rank, it would need to select multiple ids
        # based on rank, here we select only a single gpu and use it for input and
        # output.
        gen_model = DistributedDataParallel(gen_model,
                                            device_ids=[args.device],
                                            output_device=args.device)
        discrim_model = DistributedDataParallel(discrim_model,
                                                device_ids=[args.device],
                                                output_device=args.device)
        logger.info("Model located on %s", args.device)

    # This is the training loop
    steps = global_step
    model_base = os.path.join(args.basedir, 'checkpoint')
    discrim_base = f'{model_base}-discrim'
    gen_base = f'{model_base}-gen'
    do_on_demand_masking = not args.preprocessed
    if do_on_demand_masking:
        logger.info(f"On-demand masking is turned on")

    timer = Timer()

    for epoch in range(start_epoch, args.epochs):
        gen_model.train()
        discrim_model.train()
        avg_gen_loss = Average('average_train_gen_loss')
        avg_discrim_loss = Average('average_train_discrim_loss')
        avg_discrim_acc = Average('average_train_discrim_acc')
        avg_train_loss = Average('average5_train_loss')
        metrics = {}
        optz.zero_grad()
        timer.start()
        print(f'Starting epoch {epoch + 1}')
        train_iter = iter(train_loader)
        valid_iter = iter(valid_loader)

        for i in range(train_steps_per_epoch):
            steps += 1
            x, y = next(train_iter)
            do_report = (i + 1) % report_on == 0 and args.print
            gen_loss_step, discrim_loss_step, acc = gen_vs_discrim(
                x, y, args.device, gen_model, gen_loss_fn, discrim_model,
                discrim_loss_fn, mask_value, vocab_size, index2word, do_report,
                do_on_demand_masking)
            avg_gen_loss.update(gen_loss_step.item())
            total_loss_step = gen_loss_step + args.gen_loss_scale * discrim_loss_step
            total_loss_step.backward()
            avg_discrim_loss.update(discrim_loss_step.item())
            avg_train_loss.update(total_loss_step.item())
            avg_discrim_acc.update(acc)
            torch.nn.utils.clip_grad_norm_(parameters, args.clip)
            optz.step()
            optz.zero_grad()
            if (i + 1) % report_on == 0:
                logging.info('Loss g=%f, d=%f total=%f, Per token acc=%f',
                             avg_gen_loss.avg, avg_discrim_loss.avg,
                             avg_train_loss.avg, avg_discrim_acc.avg)

            if (i + 1) % update_on == 0 and args.local_rank < 1:
                elapsed = timer.elapsed(True)
                logging.info('elapsed time this epoch %d min', elapsed)
                logging.info('elapsed step time %f steps/min', i / elapsed)
                logging.info('LR: %f', optz.current_lr)
                save_checkpoint(gen_model, gen_base, steps, tick_type='step')
                save_checkpoint(discrim_model,
                                discrim_base,
                                steps,
                                tick_type='step')

        # How much time elapsed in minutes
        elapsed = timer.elapsed(True)
        # This is the average training token-level loss across all machines
        # This is the token-level training perplexity
        metrics['train_elapsed_min'] = elapsed
        metrics['average_train_gen_loss'] = avg_gen_loss.avg
        metrics['average_train_discrim_loss'] = avg_discrim_loss.avg
        metrics[
            'average_train_discrim_per_token_accuracy'] = avg_discrim_acc.avg
        metrics['average_train_loss'] = avg_train_loss.avg

        if args.local_rank < 1:
            avg_valid_gen_loss = Average('average_valid_gen_loss')
            avg_valid_discrim_loss = Average('average_valid_discrim_loss')
            avg_valid_discrim_acc = Average('average_valid_discrim_acc')
            avg_valid_loss = Average('average_valid_loss')
            timer.start()
            gen_model.eval()
            discrim_model.eval()
            for i in range(valid_steps_per_epoch):
                with torch.no_grad():
                    x, y = next(valid_iter)
                    do_report = (i + 1) % report_on == 0 and args.print
                    gen_loss_step, discrim_loss_step, acc = gen_vs_discrim(
                        x, y, args.device, gen_model, gen_loss_fn,
                        discrim_model, discrim_loss_fn, mask_value, vocab_size,
                        index2word, do_report, do_on_demand_masking)
                    avg_valid_gen_loss.update(gen_loss_step.item())
                    avg_valid_discrim_acc.update(acc)
                    avg_valid_discrim_loss.update(discrim_loss_step.item())
                    total_loss_step = gen_loss_step + args.gen_loss_scale * discrim_loss_step
                    avg_valid_loss.update(total_loss_step.item())
            elapsed = timer.elapsed(True)
            metrics['valid_elapsed_min'] = elapsed
            metrics['average_valid_gen_loss'] = avg_valid_gen_loss.avg
            metrics['average_valid_discrim_loss'] = avg_valid_discrim_loss.avg
            metrics[
                'average_valid_discrim_per_token_accuracy'] = avg_valid_discrim_acc.avg
            metrics['average_valid_loss'] = avg_valid_loss.avg
            logger.info(metrics)
            save_checkpoint(discrim_model,
                            discrim_base,
                            epoch,
                            tick_type='epoch',
                            save_npz=True)
            save_checkpoint(gen_model,
                            gen_base,
                            epoch,
                            tick_type='epoch',
                            save_npz=True)