@files(params)
def score_frame_queue(
    (dataset_dir, dataset_config_filename, frame_hist_filename),
    (outfile_wait, outfile_npz), dataset_name, frame, likelihood_i):

    np.random.seed(0)

    dataset_dir = os.path.join(FL_DATA, dataset_name)

    cf = pickle.load(open(dataset_config_filename))
    led_params = pickle.load(
        open(os.path.join(dataset_dir, "led.params.pickle")))

    EO = measure.led_params_to_EO(cf, led_params)

    x_range = np.linspace(0, cf['field_dim_m'][1], X_GRID_NUM)
    y_range = np.linspace(0, cf['field_dim_m'][0], Y_GRID_NUM)
    phi_range = np.linspace(0, 2 * np.pi, PHI_GRID_NUM)
    degrees_from_vertical = 30
    radian_range = degrees_from_vertical / 180. * np.pi
    theta_range = np.linspace(np.pi / 2. - radian_range,
                              np.pi / 2. + radian_range, THETA_GRID_NUM)

    sv = create_state_vect(y_range, x_range, phi_range, theta_range)

    # now the input args
    chunk_size = 80000
    chunks = int(np.ceil(len(sv) / float(chunk_size)))
       
@files(params)
def det_run((epoch_dir, epoch_config_filename, 
            region_filename, led_params_filename), outfile, 
           epoch, 
           frame_start, frame_end):
    np.random.seed(0)
    
    cf = pickle.load(open(epoch_config_filename, 'r'))
    region = pickle.load(open(region_filename, 'r'))
    
    env = util.Environmentz(cf['field_dim_m'], 
                            cf['frame_dim_pix'])
    led_params = pickle.load(open(led_params_filename, 'r'))

    eo_params = measure.led_params_to_EO(cf, led_params)
    if frame_end > cf['end_f']:
        frame_end = cf['end_f']

    truth = np.load(os.path.join(epoch_dir, 'positions.npy'))
    truth_interp, missing = measure.interpolate(truth)
    derived_truth = measure.compute_derived(truth_interp, 
                                            T_DELTA)


    frame_pos = np.arange(frame_start, frame_end)
    # load frames
    frames = organizedata.get_frames(epoch_dir, frame_pos)

    FRAMEN = len(frames)
Exemple #3
0
def pf_run((epoch_dir, epoch_config_filename, 
            region_filename, led_params_filename), outfile, 
           epoch, (config_name, config_params), 
           posnoise, 
           velnoise, pix_threshold, PARTICLEN, 
           frame_start, frame_end, diode_scale):
    np.random.seed(0)
    
    cf = pickle.load(open(epoch_config_filename, 'r'))
    region = pickle.load(open(region_filename, 'r'))
    
    env = util.Environmentz(cf['field_dim_m'], 
                            cf['frame_dim_pix'])
    led_params = pickle.load(open(led_params_filename, 'r'))

    eoparams = enlarge_sep(measure.led_params_to_EO(cf, led_params),
                           amount = diode_scale, 
                           front_amount = diode_scale, back_amount = diode_scale)

    #print "EO PARAMS ARE", eoparams
    tr = TemplateObj(0.8, 0.4)
    tr.set_params(*eoparams)
    
    le1 = likelihood.LikelihoodEvaluator2(env, tr, similarity='dist', 
                                         likeli_params = config_params)
    
    
    model_inst = model.CustomModel(env, le1, 
                                   POS_NOISE_STD=posnoise,
                                   VELOCITY_NOISE_STD=velnoise)
    frame_pos = np.arange(frame_start, frame_end)
Exemple #4
0

@files(params)
def pf_run((epoch_dir, epoch_config_filename, region_filename,
            led_params_filename), outfile, epoch, (config_name, config_params),
           posnoise, velnoise, pix_threshold, PARTICLEN, frame_start,
           frame_end, diode_scale):
    np.random.seed(0)

    cf = pickle.load(open(epoch_config_filename, 'r'))
    region = pickle.load(open(region_filename, 'r'))

    env = util.Environmentz(cf['field_dim_m'], cf['frame_dim_pix'])
    led_params = pickle.load(open(led_params_filename, 'r'))

    eoparams = enlarge_sep(measure.led_params_to_EO(cf, led_params),
                           amount=diode_scale,
                           front_amount=diode_scale,
                           back_amount=diode_scale)

    #print "EO PARAMS ARE", eoparams
    tr = TemplateObj(0.8, 0.4)
    tr.set_params(*eoparams)

    le1 = likelihood.LikelihoodEvaluator2(env,
                                          tr,
                                          similarity='dist',
                                          likeli_params=config_params)

    model_inst = model.CustomModel(env,
                                   le1,
                yield (infiles, outfiles, epoch, frame, likelihood_i)
           

@files(params)
def score_frame_queue((dataset_dir, dataset_config_filename, 
            frame_hist_filename), (outfile_wait, 
                                   outfile_npz), dataset_name, frame, likelihood_i):

    np.random.seed(0)
    
    dataset_dir = os.path.join(FL_DATA, dataset_name)

    cf = pickle.load(open(dataset_config_filename))
    led_params = pickle.load(open(os.path.join(dataset_dir, "led.params.pickle")))

    EO = measure.led_params_to_EO(cf, led_params)

    x_range = np.linspace(0, cf['field_dim_m'][1], X_GRID_NUM)
    y_range = np.linspace(0, cf['field_dim_m'][0], Y_GRID_NUM)
    phi_range = np.linspace(0, 2*np.pi, PHI_GRID_NUM)
    degrees_from_vertical = 30
    radian_range = degrees_from_vertical/180. * np.pi
    theta_range = np.linspace(np.pi/2.-radian_range, 
                              np.pi/2. + radian_range, THETA_GRID_NUM)

    sv = create_state_vect(y_range, x_range, phi_range, theta_range)

    # now the input args
    chunk_size = 80000
    chunks = int(np.ceil(len(sv) / float(chunk_size)))
        if pos > MAX:
            return


@files(params)
def det_run((epoch_dir, epoch_config_filename, region_filename,
             led_params_filename), outfile, epoch, frame_start, frame_end):
    np.random.seed(0)

    cf = pickle.load(open(epoch_config_filename, 'r'))
    region = pickle.load(open(region_filename, 'r'))

    env = util.Environmentz(cf['field_dim_m'], cf['frame_dim_pix'])
    led_params = pickle.load(open(led_params_filename, 'r'))

    eo_params = measure.led_params_to_EO(cf, led_params)
    if frame_end > cf['end_f']:
        frame_end = cf['end_f']

    truth = np.load(os.path.join(epoch_dir, 'positions.npy'))
    truth_interp, missing = measure.interpolate(truth)
    derived_truth = measure.compute_derived(truth_interp, T_DELTA)

    frame_pos = np.arange(frame_start, frame_end)
    # load frames
    frames = organizedata.get_frames(epoch_dir, frame_pos)

    FRAMEN = len(frames)

    coordinates = []