Exemple #1
0
def _replace_output(self, output, attention_map, data_shape):
    """Replaces the model output with the current attention map."""
    if self.medcam_dict['_replace_output']:
        if len(attention_map.keys()) == 1:
            output = torch.tensor(
                self.medcam_dict['current_attention_map']).to(
                    str(self.medcam_dict['device']))
            if data_shape is not None:  # If data_shape is None then the task is classification -> return unchanged attention map
                output = medcam_utils.interpolate(output, data_shape)
        else:
            raise ValueError(
                "Not possible to replace output when layer is 'full', only with 'auto' or a manually set layer"
            )
    return output
Exemple #2
0
 def generate(
         self
 ):  # TODO: Redo ggcam, find a solution for normalize_per_channel
     """Generates an attention map."""
     for layer_name in self.attention_map_GCAM.keys():
         if self.attention_map_GBP.shape == self.attention_map_GCAM[
                 layer_name].shape:
             self.attention_map_GCAM[layer_name] = np.multiply(
                 self.attention_map_GCAM[layer_name],
                 self.attention_map_GBP)
         else:
             attention_map_GCAM_tmp = medcam_utils.interpolate(
                 self.attention_map_GCAM[layer_name],
                 self.attention_map_GBP.shape[2:])
             self.attention_map_GCAM[layer_name] = np.multiply(
                 attention_map_GCAM_tmp, self.attention_map_GBP)
         self.attention_map_GCAM[layer_name] = self._normalize_per_channel(
             self.attention_map_GCAM[layer_name])
     return self.attention_map_GCAM
Exemple #3
0
    def _generate_helper(self, fmaps, grads, layer):
        B, C, *data_shape = grads.size()

        alpha_num = grads.pow(2)
        tmp = fmaps.mul(grads.pow(3))
        tmp = tmp.view(B, C, prod(data_shape))
        tmp = tmp.sum(-1, keepdim=True)
        if self.input_dim == 2:
            tmp = tmp.view(B, C, 1, 1)
        else:
            tmp = tmp.view(B, C, 1, 1, 1)
        alpha_denom = grads.pow(2).mul(2) + tmp
        alpha_denom = torch.where(alpha_denom != 0.0, alpha_denom, torch.ones_like(alpha_denom))
        alpha = alpha_num.div(alpha_denom + 1e-7)

        if self.mask is not None:
            mask = self.mask.squeeze()
        if self.mask is None:  # Classification
            prob_weights = torch.tensor(1.0)
        elif len(mask.shape) == 1:  # Classification best/index
            prob_weights = self.logits.squeeze()[torch.argmax(mask)]
        else:  # Segmentation
            masked_logits = self.logits * self.mask
            prob_weights = medcam_utils.interpolate(masked_logits, grads.shape[2:])  # TODO: Still removes channels...

        positive_gradients = F.relu(torch.mul(prob_weights.exp(), grads))
        weights = (alpha * positive_gradients).view(B, C, -1).sum(-1)
        if self.input_dim == 2:
            weights = weights.view(B, C, 1, 1)
        else:
            weights = weights.view(B, C, 1, 1, 1)

        attention_map = (weights * fmaps)
        try:
            attention_map = attention_map.view(B, self.output_channels, -1, *data_shape)
        except RuntimeError:
            raise RuntimeError("Number of set channels ({}) is not a multiple of the feature map channels ({}) in layer: {}".format(self.output_channels, fmaps.shape[1], layer))
        attention_map = torch.sum(attention_map, dim=2)
        attention_map = F.relu(attention_map).detach()
        attention_map = self._normalize_per_channel(attention_map)

        return attention_map
Exemple #4
0
def _preprocessing(attention_map, mask, attention_threshold):
    """Interpolates, normalizes and binarizes the attention map."""
    if not np.isfinite(attention_map).all():
        raise ValueError("Attention map contains non finite elements")
    if not np.isfinite(mask).all():
        raise ValueError("Mask contains non finite elements")
    if np.sum(
            attention_map < 0
    ) > 0:  # For gbp and ggcam as they contain negative values, which would otherwise falsify the evaluation
        attention_map = np.abs(attention_map)
    attention_map = medcam_utils.interpolate(attention_map,
                                             mask.shape,
                                             squeeze=True)
    attention_map = medcam_utils.normalize(attention_map.astype(np.float))
    weights = copy.deepcopy(attention_map)
    mask = np.array(mask, dtype=int)
    if np.min(attention_map) == np.max(attention_map):
        attention_threshold = 1
    elif attention_threshold == 'otsu':
        attention_threshold = threshold_otsu(attention_map.flatten())
    attention_map[attention_map < attention_threshold] = 0
    attention_map[attention_map >= attention_threshold] = 1
    attention_map = np.array(attention_map, dtype=int)
    return attention_map, mask, weights