def py__getattribute__(self, name_or_str, name_context=None, position=None, analysis_errors=True): """ :param position: Position of the last statement -> tuple of line, column """ if name_context is None: name_context = self names = self.goto(name_or_str, position) string_name = name_or_str.value if isinstance(name_or_str, Name) else name_or_str # This paragraph is currently needed for proper branch type inference # (static analysis). found_predefined_types = None if self.predefined_names and isinstance(name_or_str, Name): node = name_or_str while node is not None and not parser_utils.is_scope(node): node = node.parent if node.type in ("if_stmt", "for_stmt", "comp_for", 'sync_comp_for'): try: name_dict = self.predefined_names[node] types = name_dict[string_name] except KeyError: continue else: found_predefined_types = types break if found_predefined_types is not None and names: from medi.inference import flow_analysis check = flow_analysis.reachability_check( context=self, value_scope=self.tree_node, node=name_or_str, ) if check is flow_analysis.UNREACHABLE: values = NO_VALUES else: values = found_predefined_types else: values = ValueSet.from_sets(name.infer() for name in names) if not names and not values and analysis_errors: if isinstance(name_or_str, Name): from medi.inference import analysis message = ("NameError: name '%s' is not defined." % string_name) analysis.add(name_context, 'name-error', name_or_str, message) debug.dbg('context.names_to_types: %s -> %s', names, values) if values: return values return self._check_for_additional_knowledge(name_or_str, name_context, position)
def parent_scope(node): while True: node = node.parent if parser_utils.is_scope(node): return node elif node.type in ('argument', 'testlist_comp'): if node.children[1].type in ('comp_for', 'sync_comp_for'): return node.children[1] elif node.type == 'dictorsetmaker': for n in node.children[1:4]: # In dictionaries it can be pretty much anything. if n.type in ('comp_for', 'sync_comp_for'): return n
def check_flow_information(value, flow, search_name, pos): """ Try to find out the type of a variable just with the information that is given by the flows: e.g. It is also responsible for assert checks.:: if isinstance(k, str): k. # <- completion here ensures that `k` is a string. """ if not settings.dynamic_flow_information: return None result = None if is_scope(flow): # Check for asserts. module_node = flow.get_root_node() try: names = module_node.get_used_names()[search_name.value] except KeyError: return None names = reversed([ n for n in names if flow.start_pos <= n.start_pos < (pos or flow.end_pos) ]) for name in names: ass = search_ancestor(name, 'assert_stmt') if ass is not None: result = _check_isinstance_type(value, ass.assertion, search_name) if result is not None: return result if flow.type in ('if_stmt', 'while_stmt'): potential_ifs = [c for c in flow.children[1::4] if c != ':'] for if_test in reversed(potential_ifs): if search_name.start_pos > if_test.end_pos: return _check_isinstance_type(value, if_test, search_name) return result
def infer_node(context, element): if isinstance(context, CompForContext): return _infer_node(context, element) if_stmt = element while if_stmt is not None: if_stmt = if_stmt.parent if if_stmt.type in ('if_stmt', 'for_stmt'): break if parser_utils.is_scope(if_stmt): if_stmt = None break predefined_if_name_dict = context.predefined_names.get(if_stmt) # TODO there's a lot of issues with this one. We actually should do # this in a different way. Caching should only be active in certain # cases and this all sucks. if predefined_if_name_dict is None and if_stmt \ and if_stmt.type == 'if_stmt' and context.inference_state.is_analysis: if_stmt_test = if_stmt.children[1] name_dicts = [{}] # If we already did a check, we don't want to do it again -> If # value.predefined_names is filled, we stop. # We don't want to check the if stmt itself, it's just about # the content. if element.start_pos > if_stmt_test.end_pos: # Now we need to check if the names in the if_stmt match the # names in the suite. if_names = get_names_of_node(if_stmt_test) element_names = get_names_of_node(element) str_element_names = [e.value for e in element_names] if any(i.value in str_element_names for i in if_names): for if_name in if_names: definitions = context.inference_state.infer(context, if_name) # Every name that has multiple different definitions # causes the complexity to rise. The complexity should # never fall below 1. if len(definitions) > 1: if len(name_dicts) * len(definitions) > 16: debug.dbg('Too many options for if branch inference %s.', if_stmt) # There's only a certain amount of branches # Medi can infer, otherwise it will take to # long. name_dicts = [{}] break original_name_dicts = list(name_dicts) name_dicts = [] for definition in definitions: new_name_dicts = list(original_name_dicts) for i, name_dict in enumerate(new_name_dicts): new_name_dicts[i] = name_dict.copy() new_name_dicts[i][if_name.value] = ValueSet([definition]) name_dicts += new_name_dicts else: for name_dict in name_dicts: name_dict[if_name.value] = definitions if len(name_dicts) > 1: result = NO_VALUES for name_dict in name_dicts: with context.predefine_names(if_stmt, name_dict): result |= _infer_node(context, element) return result else: return _infer_node_if_inferred(context, element) else: if predefined_if_name_dict: return _infer_node(context, element) else: return _infer_node_if_inferred(context, element)
def _get_flow_scopes(node): while True: node = get_parent_scope(node, include_flows=True) if node is None or is_scope(node): return yield node