def pd_postprocess(self, inference): scores = np.array(inference.getLayerFp16("classificators"), dtype=np.float16) # 896 bboxes = np.array(inference.getLayerFp16("regressors"), dtype=np.float16).reshape((self.nb_anchors,18)) # 896x18 # Decode bboxes self.regions = mpu.decode_bboxes(self.pd_score_thresh, scores, bboxes, self.anchors) # Non maximum suppression self.regions = mpu.non_max_suppression(self.regions, self.pd_nms_thresh) if self.use_lm: mpu.detections_to_rect(self.regions) mpu.rect_transformation(self.regions, self.video_size, self.video_size)
def pd_postprocess(self, inference): scores = np.squeeze(inference[self.pd_scores]) # 896 bboxes = inference[self.pd_bboxes][0] # 896x12 # Decode bboxes self.regions = mpu.decode_bboxes(self.pd_score_thresh, scores, bboxes, self.anchors, best_only=not self.multi_detection) # Non maximum suppression (not needed if best_only is True) if self.multi_detection: self.regions = mpu.non_max_suppression(self.regions, self.pd_nms_thresh) mpu.detections_to_rect(self.regions, kp_pair=[0, 1] if self.full_body else [2, 3]) mpu.rect_transformation(self.regions, self.frame_size, self.frame_size)
def pd_postprocess(self, inference): scores = np.array(inference.getLayerFp16("classificators"), dtype=np.float16) # 896 bboxes = np.array(inference.getLayerFp16("regressors"), dtype=np.float16).reshape( (self.nb_anchors, 12)) # 896x12 # Decode bboxes self.regions = mpu.decode_bboxes(self.pd_score_thresh, scores, bboxes, self.anchors, best_only=not self.multi_detection) # Non maximum suppression (not needed if best_only is True) if self.multi_detection: self.regions = mpu.non_max_suppression(self.regions, self.pd_nms_thresh) mpu.detections_to_rect(self.regions, kp_pair=[0, 1] if self.full_body else [2, 3]) mpu.rect_transformation(self.regions, self.frame_size, self.frame_size)