Exemple #1
0
def mask2rws(mask_path, rws_path, dcm_path=None):
    if isinstance(mask_path, str):
        mask = mv.imread(mask_path, mv.ImreadMode.GRAY)
        dcm_path = mv.basename(mask_path).replace('.png', '.dcm')
    else:
        mask = mask_path
        assert dcm_path is not None

    contours, _ = cv2.findContours(mask, cv2.RETR_TREE,
                                   cv2.CHAIN_APPROX_SIMPLE)

    shapes = []
    for contour in contours:
        shape = _gen_rws_shape('auto', contour)
        shapes.append(shape)

    data = dict(
        version='0.1.0',
        flags={},
        shapes=shapes,
        lineColor=None,
        fillColor=None,
        imagePath=dcm_path,
        imageData=None,
        imageHeight=mask.shape[0],
        imageWidth=mask.shape[1],
    )

    with open(rws_path, 'w') as f:
        json.dump(data, f, ensure_ascii=False, indent=2)
Exemple #2
0
def test_imread_imwrite(img):
    dst_dir = mv.joinpath(DATA_DIR, 'temporary_subdir')
    dst_path = mv.joinpath(dst_dir, mv.basename(PNG_IMG_PATH))
    mv.mkdirs(dst_dir)

    ret_val = mv.imwrite(img, dst_path)
    assert ret_val
    img_reloaded = mv.imread(dst_path, mv.ImreadMode.UNCHANGED)
    assert_image_equal(img, img_reloaded)

    mv.rmtree(dst_dir)
Exemple #3
0
def bdc2rws_contour(dcm_path, bdc_path, rws_path):
    ds = mv.dcminfo(dcm_path)
    contours = load_bdc_dr_contour(bdc_path)

    shapes = []
    for label, contour in contours:
        shape = _gen_rws_shape(label, contour)
        shapes.append(shape)

    data = dict(
        version='0.1.0',
        flags={},
        shapes=shapes,
        lineColor=None,
        fillColor=None,
        imagePath=mv.basename(dcm_path),
        imageData=None,
        imageHeight=ds.Rows,
        imageWidth=ds.Columns,
    )

    with open(rws_path, 'w') as f:
        json.dump(data, f, ensure_ascii=False, indent=2)
Exemple #4
0
    def __init__(self,
                 mode,
                 model,
                 batch_processor,
                 train_dataloader=None,
                 val_dataloader=None,
                 optimizer=None,
                 work_dir=None,
                 max_epochs=10000):
        """ A training helper for PyTorch.

        Args:
            model (`torch.nn.Module`): The model to be run.
            mode ('ModeKey'): running mode.
            batch_processor (callable): A callable method that process a data
                batch. The interface of this method should be
                `batch_processor(model, data, train_mode) -> dict`
            train_dataloader ('DataLoader'): train data loader.
            val_dataloader ('DataLoader'): validation data loader.
            optimizer (dict or `Optimizer`): If it is a dict, runner will
                construct an optimizer according to it.
            work_dir (str, optional): The working directory to save
                checkpoints, logs and other outputs.
            max_epochs (int): Total training epochs.
        """
        assert isinstance(mode, mv.ModeKey)
        assert isinstance(model, torch.nn.Module)
        assert callable(batch_processor)
        assert isinstance(optimizer, (str, torch.optim.Optimizer))
        assert isinstance(work_dir, str) or work_dir is None
        assert isinstance(max_epochs, int)

        self.mode = mode
        self.epoch_runner = getattr(self, mode.value)
        self.model = model
        self.batch_processor = batch_processor
        self.train_dataloader = train_dataloader
        self.val_dataloader = val_dataloader
        self.optimizer = self.build_optimizer(optimizer)

        # create work_dir
        self.work_dir = mv.abspath(work_dir if work_dir is not None else '.')
        mv.mkdirs(self.work_dir)

        # init TensorboardX visualizer and dataloader
        if mode == mv.ModeKey.TRAIN:
            experiment = mv.basename(self.work_dir)
            self.visualizer = mv.TensorboardVisualizer(experiment)
            self.dataloader = self.train_dataloader
        else:
            self.visualizer = None
            self.dataloader = self.val_dataloader

        # init hooks and average meter
        self._hooks = []
        self.average_meter = AverageMeter()

        # init loop parameters
        self._epoch = 0
        self._max_epochs = max_epochs if mode == mv.ModeKey.TRAIN else 1
        self._inner_iter = 0
        self._iter = 0
        self._max_iters = 0

        # get model name from model class
        if hasattr(self.model, 'module'):
            self._model_name = self.model.module.__class__.__name__
        else:
            self._model_name = self.model.__class__.__name__