Exemple #1
0
 def query(self, term, symptoms_side, dominant_hemisphere):
     path = semiology_dict_path if term in all_semiology_terms else None
     query_semiology_result, num_query_lat, num_query_loc = QUERY_SEMIOLOGY(
         mega_analysis_df,
         semiology_term=term,
         semiology_dict_path=path,
     )
     if query_semiology_result is None:
         return None
     all_combined_gifs, num_QL_lat, num_QL_CL, num_QL_IL, num_QL_BL, num_QL_DomH, num_QL_NonDomH = QUERY_LATERALISATION(
         query_semiology_result,
         mega_analysis_df,
         one_map,
         gif_lat_file,
         side_of_symptoms_signs=symptoms_side.value,
         pts_dominant_hemisphere_R_or_L=dominant_hemisphere.value,
     )
     if all_combined_gifs is None:
         pivot_result = melt_then_pivot_query(
             mega_analysis_df,
             query_semiology_result,
             term,
         )
         all_combined_gifs = pivot_result_to_one_map(pivot_result, one_map)
     return all_combined_gifs
 def query(self, term):
     path = semiology_dict_path if term in all_semiology_terms else None
     inspect_result, num_query_lat, num_query_loc = QUERY_SEMIOLOGY(
         mega_analysis_df,
         semiology_term=term,
         semiology_dict_path=path,
     )
     return path, inspect_result
Exemple #3
0
 def test_parenthesis_and_caps_QUERY_SEMIOLOGY_with_dictionary(self):
     query, num_query_lat, num_query_loc = QUERY_SEMIOLOGY(
         self.df,
         # see dummy_SemioDict: equivalent to "Aphasia"
         semiology_term='dummy_test_link_aphasia',
         ignore_case=False,
         # in QUERY_SEMIO re.IGNORECASE is used for dictionary anyway
         semiology_dict_path=dummy_semiology_dict_path,
         col1='Reported Semiology',
         col2='Semiology Category',
     )
     assert (query['Localising'].sum() == 14)
     assert (query['Lateralising'].sum() == 6)
Exemple #4
0
 def test_parenthesis_and_caps_QUERY_SEMIOLOGY_regex_pickup(self):
     """
     default QUERY_SEMIOLOGY doesn't exclude paed cases
     """
     query, num_query_lat, num_query_loc = QUERY_SEMIOLOGY(
         self.df,
         semiology_term=['aphasia'],
         ignore_case=True,
         semiology_dict_path=None,
         col1='Reported Semiology',
         col2='Semiology Category',
     )
     assert (query['Localising'].sum() == 14)
     assert (query['Lateralising'].sum() == 6)
Exemple #5
0
 def test_caps_QUERY_SEMIOLOGY_regex_pickup(self):
     """
     when ignore case is false, it won't pick up case mismatches.
     so sum is slightly less.
     """
     query, num_query_lat, num_query_loc = QUERY_SEMIOLOGY(
         self.df,
         semiology_term=['aphasia'],
         ignore_case=False,
         semiology_dict_path=None,
         col1='Reported Semiology',
         col2='Semiology Category',
     )
     assert (query['Localising'].sum() == 13)
     assert (query['Lateralising'].sum() == 6)
Exemple #6
0
    def test_only_postictal_cases(self):
        """
        Include only the single postictal aphasia. Note Dominant in dummy data.
        cf test_postictal_exclusions
        """
        # Low level test
        df_postictal = only_postictal_cases(self.df)
        query, num_query_lat, num_query_loc = QUERY_SEMIOLOGY(
            df_postictal,
            semiology_term=['aphasia'],
            ignore_case=True,
            semiology_dict_path=None,
            col1='Reported Semiology',
            col2='Semiology Category',
        )
        assert (query['Localising'].sum() == 1)
        assert (query['Lateralising'].sum() == 1)

        # High level test
        patient = Semiology('aphasia',
                            Laterality.NEUTRAL,
                            dominant_hemisphere=Laterality.LEFT)
        patient.data_frame = self.df
        patient.include_postictals = True
        patient.include_only_postictals = True
        patient.granular = True

        lat_allgifs = patient.query_lateralisation(one_map_dummy)
        lat_allgifs = lat_allgifs[['Gif Parcellations', 'pt #s']].astype({
            'Gif Parcellations':
            'int32',
            'pt #s':
            'int32'
        })
        lat_allgifs.set_index('Gif Parcellations', inplace=True)

        # note that dominant_hemisphere == Laterality.LEFT as set above. Just to clarify results change if dominace changes. Also 1's become 2's if not granular.
        assert (lat_allgifs.loc[164, 'pt #s'] == 1)
        assert (lat_allgifs.loc[166, 'pt #s'] == 1)
        assert (lat_allgifs.loc[163, 'pt #s'] == 0)
        assert (lat_allgifs.loc[165, 'pt #s'] == 0)

        lat_allgifs = lat_allgifs.loc[lat_allgifs['pt #s'] != 0, :]
        SVT_output, _ = patient.get_num_datapoints_dict(method='minmax')
        assert SVT_output == dict((lat_allgifs)['pt #s'])
Exemple #7
0
 def test_postictal_exclusion(self):
     """
     Exclude the single postictal aphasia.
     After update in June, default is to exclude postictals.
     So the result of this should be the same as query_semiology()
     """
     df_excl = exclusions(self.df)
     query, num_query_lat, num_query_loc = QUERY_SEMIOLOGY(
         df_excl,
         semiology_term=['aphasia'],
         ignore_case=True,
         semiology_dict_path=None,
         col1='Reported Semiology',
         col2='Semiology Category',
     )
     assert (query['Localising'].sum() == 13)
     assert (query['Lateralising'].sum() == 5)
     print('\n2.2 postictal\n')