def test_div(): np.testing.assert_allclose( F.div(tensor([3.0, 4.0]), 2).numpy(), np.divide(np.array([3, 4], dtype=np.float32), 2), ) np.testing.assert_allclose( (tensor([3, 4]) / 2).numpy(), np.divide(np.array([3, 4], dtype=np.float32), 2), ) np.testing.assert_allclose( F.floor_div(tensor([-5.0, -7.0]), 2).numpy(), np.floor_divide(np.array([-5.0, -7.0], dtype=np.float32), 2), ) np.testing.assert_allclose( (tensor([-5, -7]) // 2).numpy(), np.floor_divide(np.array([-5, -7], dtype=np.int32), 2), )
def forward(self, features, label=None, mask=None): """ if label and mask both None, the loss will degenerate to SimSLR unsupervised loss. Reference: "A Simple Framework for Contrastive Learning of Visual Representations"<https://arxiv.org/pdf/2002.05709.pdf> "Supervised Contrastive Learning"<https://arxiv.org/abs/2004.11362> Args: features(tensor): The embedding feature. shape=[bs, n_views, ...] label(tensor): The label of images, shape=[bs] mask(tensor): contrastive mask of shape [bsz, bsz], mask_{i,j}=1 if sample j has the same class as sample i. Can be asymmetric. return: loss """ if len(features.shape) < 3: raise ValueError("Features need have 3 dimensions at least") bs, num_view = features.shape[:2] #if dimension > 3, change the shape of the features to [bs, num_view, ...] if len(features.shape) > 3: features = features.reshape(bs, num_view, -1) #label and mask cannot provided at the same time if (label is not None) and (mask is not None): raise ValueError("label and mask cannot provided at the same time") elif (label is None) and (mask is None): mask = F.eye(bs, dtype="float32") elif label is not None: label = label.reshape(-1, 1) if label.shape[0] != bs: raise RuntimeError( "Num of labels does not match num of features") mask = F.equal(label, label.T) else: mask = mask.astype("float32") contrast_count = features.shape[1] features = F.split(features, features.shape[1], axis=1) contrast_feature = F.squeeze(F.concat(features, axis=0), axis=1) if self.contrast_mode == "one": anchor_feature = features[:, 0] anchor_count = 1 elif self.contrast_mode == "all": anchor_feature = contrast_feature anchor_count = contrast_count else: raise ValueError("Unknown mode:{}".format(self.contrast_mode)) #compute logits anchor_dot_contrast = F.div( F.matmul(anchor_feature, contrast_feature.T), self.temperate) #for numerical stability logits_max = F.max(anchor_dot_contrast, axis=-1, keepdims=True) logits = anchor_dot_contrast - logits_max #tile mask an1, con = mask.shape[:2] nums = anchor_count * contrast_count # mask-out self-contrast cases mask = F.stack([mask] * nums).reshape(an1 * anchor_count, con * contrast_count) logits_mask = F.scatter( F.ones_like(mask), 1, F.arange(0, int(bs * anchor_count), dtype="int32").reshape(-1, 1), F.zeros(int(bs * anchor_count), dtype="int32").reshape(-1, 1)) mask = mask * logits_mask #compute log_prob exp_logits = F.exp(logits) * logits_mask log_prob = logits - F.log(F.sum(exp_logits, axis=1, keepdims=True)) #equation 2 #mean mean_log_prob_pos = F.sum(mask * log_prob, axis=1) / F.sum(mask, axis=1) #loss loss = -(self.temperate / self.base_temperate) * mean_log_prob_pos loss = F.mean(loss.reshape(anchor_count, bs)) return loss
x = tensor(np.random.random((10, 28, 28, 1))) out = F.flatten(x, start_axis=1, end_axis=-1) # 将从 start_axis 维到 end_axis 维的子张量展平 print(x.shape) print(out.shape) ''' Softmax ''' # 举例:某张手写数字图片的对应标签为 3,进行 one-hot 编码表示 inp = tensor([3]) out = F.one_hot(inp, num_classes=10) print(out.numpy()) # 输出是 2-D 的,因为将数量 n 也包括进去了,此时 n=1 # 也可以选择将整个 train_label 转换成 one_hot 编码 print(F.one_hot(tensor(train_label), num_classes=10).shape) inp = tensor([1., 2., 3., 4.]) average = F.div(inp, F.sum(inp)) softmax = F.softmax(inp) print(average.numpy().round(decimals=4)) print(softmax.numpy().round(decimals=4)) ''' 交叉熵(Cross Entropy) ''' # 预测值完全准确的情况,loss 应该为 0 pred = tensor([0., 0., 0., 1., 0., 0., 0., 0., 0., 0.]).reshape(1, -1) label = tensor([3]) loss = F.loss.cross_entropy(pred, label, with_logits=False) print(loss.item()) # 预测值比较准确的情况 pred = tensor([0., 0., 0.3, 0.7, 0., 0., 0., 0., 0., 0.]).reshape(1, -1) label = tensor([3]) loss = F.loss.cross_entropy(pred, label, with_logits=False) print(loss.item())
import megengine.functional as F A = mge.tensor([[2., 4., 2.], [2., 4., 2.]]) B = mge.tensor([[1., 2., 1.], [1., 2., 1.]]) print(A + B) print(A - B) print(A * B) print(A / B) print(F.add(A, B)) print(F.sub(A, B)) print(F.mul(A, B)) print(F.div(A, B)) A = mge.tensor([[1., 2., 3.], [4., 5., 6.]]) print(A[1, :2]) A = mge.tensor([[1., 2., 3.], [4., 5., 6.]]) print(A.shape) A = A.reshape(3, 2) print(A.shape) x = mge.tensor([[1., 3., 5.], [2., 4., 6.]])