def main(): args = parse_args() vocoder = MelVocoder(args.load_path) args.save_path.mkdir(exist_ok=True, parents=True) for i, fname in tqdm(enumerate(args.folder.glob("*.wav"))): wavname = fname.name wav, sr = librosa.core.load(fname) mel, _ = vocoder(torch.from_numpy(wav)[None]) recons = vocoder.inverse(mel).squeeze().cpu().numpy() librosa.output.write_wav(args.save_path / wavname, recons, sr=sr)
def main(): args = parse_args() vocoder = MelVocoder(args.load_path) args.save_path.mkdir(exist_ok=True, parents=True) for i, fname in tqdm(enumerate(args.pt_path.glob('*.pt'))): wavname = os.path.splitext(fname.name)[0] + '.wav' print('fname', fname) print('wavname', wavname) spectrogram = torch.load(fname) if (len(spectrogram.shape) == 2): spectrogram = spectrogram.unsqueeze(0) reconstruction = vocoder.inverse(spectrogram).squeeze().cpu().numpy() librosa.output.write_wav(str(args.save_path) + '/' + wavname, reconstruction, sr=22050)
def load_melgan(model_name="multi_speaker"): """ Exposes a MelVocoder Interface Args: model_name (str): Supports only 2 models, 'linda_johnson' or 'multi_speaker' Returns: object (MelVocoder): MelVocoder class. Default function (___call__) converts raw audio to mel inverse function convert mel to raw audio using MelGAN """ return MelVocoder(path=None, github=True, model_name=model_name)