def test_selectivity():
    Selectivity = namedtuple("Selectivity",
                             ("best_frequency", "spread", "gain"))

    # center, spread for each unit, starting at 440 Hz A and 3 semitones up from there
    s_units = [
        Selectivity(music.key_to_frequency(49), 1, 0.8),
        Selectivity(music.key_to_frequency(52), 1, 0.8)
    ]
    stim = ABAStimulus()
    network = TonotopicNetwork(s_units, stim)
    network.update_all(10)
    assert network.units[0].r > network.units[1].r
def test_build_stimulus_currents():
    stim = ABAStimulus()

    # center, spread for each unit, starting at 440 Hz A and 3 semitones up from there
    s_units = [
        Selectivity(music.key_to_frequency(49), 1, 0.6),
        Selectivity(music.key_to_frequency(46), 1, 0.6)
    ]
    stim = ABAStimulus(a_semitone=49, df=3)
    network = SynapticNetwork(selectivities=s_units, stimulus=stim)
    out = network.build_stimulus_currents()
    assert out[0][0] > out[1][0]
    assert out[0][50] < out[1][50]
def test_pars_list():
    Selectivity = namedtuple("Selectivity",
                             ("best_frequency", "spread", "gain"))
    pars_list = [{"tau": 100., "the": .4}, None]
    # center, spread for each unit, starting at 440 Hz A and 3 semitones up from there
    s_units = [
        Selectivity(music.key_to_frequency(49), 1.1, 0.8),
        Selectivity(music.key_to_frequency(49), 1, 0.8)
    ]
    stim = ABAStimulus()
    network = TonotopicNetwork(s_units, stim, pars_list=pars_list)
    network.update_all(10)
    # print(network.units[0].__dict__)
    # print(network.units[1].__dict__)
    assert network.units[0].r < network.units[1].r
 def __init__(self, name=None, best_frequency=440., spread=4., **kwargs):
     """
     all the same things as WCUnit, but also has a bf and selectivity
     Args:
         best_frequency (float): the frequency (in hz) that best excites the cell
         spread (float): inverse of selectivity, in terms of semitones to standard deviations
         **kwargs:
     """
     if not name:
         name = "S" + str(best_frequency) + "-" + str(spread)
     WCUnit.__init__(self, name=name, **kwargs)
     key = music.frequency_to_key(best_frequency)
     if music.key_to_frequency(key) != best_frequency:
         print(
             "warning- cell's response has been shifted to nearest semitone"
         )
     self.best_frequency = best_frequency
     self.spread = spread
     self.tuning_curve = self.fq_tuning_curve()
Exemple #5
0
 def test_key_to_frequency(self):
     key = 49
     self.assertEqual(440, utility.key_to_frequency(key))
Exemple #6
0
            ndf["tax"] = sim.tax
            ulst.append(ndf)

        df_out = pd.concat(ulst)
        return df_out


if __name__ == '__main__':
    tic = datetime.datetime.now()

    stim = ABAStimulus()
    Selectivity = namedtuple("Selectivity", ("best_frequency", "spread", "gain"))

    # center, spread for each unit, starting at 440 Hz A and 3 semitones up from there
    s_units = [
        Selectivity(music.key_to_frequency(49), 1, 0.6),
        Selectivity(music.key_to_frequency(52), 1, 0.6)
    ]

    stim = ABAStimulus(a_semitone=49, df=3)
    network = TonotopicNetwork(s_units, stim)
    sim = TonotopicTripletsSimulation(network=network)
    sim.run()
    data = sim.traces_to_df()
    g = sns.FacetGrid(data, col='unit', col_wrap=1)
    g.map_dataframe(plot_generic_traces)
    # f1 = generic_plot(sim.tax, np.array(sim.traces.values()))
    toc = datetime.datetime.now()
    print (toc - tic).microseconds / 10e6

    # #plt.show()
Exemple #7
0
 def test_key_to_frequency(self):
     key = 49
     self.assertEqual(440, utility.key_to_frequency(key))
def test_fq_tuning_curve():
    actual = fq_tuning_curve()
    assert actual[49] == 1
    assert music.key_to_frequency(49) == 440
def test_weird_fq_tuning_curve():
    # note: it always goes to the nearest semitone
    actual = fq_tuning_curve(num_tones=10, center=442.42)
    assert actual[49] == 1
    assert music.key_to_frequency(49) == 440