Exemple #1
0
def noisy_align(source, target, noise_std=0.04, rotation=False):
    r"""
    Constructs and perturbs the optimal similarity transform between source
    to the target by adding white noise to its weights.

    Parameters
    ----------
    source: :class:`menpo.shape.PointCloud`
        The source pointcloud instance used in the alignment
    target: :class:`menpo.shape.PointCloud`
        The target pointcloud instance used in the alignment
    noise_std: float
        The standard deviation of the white noise

        Default: 0.04
    rotation: boolean
        If False the second parameter of the Similarity,
        which captures captures inplane rotations, is set to 0.

        Default:False

    Returns
    -------
    noisy_transform : :class: `menpo.transform.Similarity`
        The noisy Similarity Transform
    """
    transform = AlignmentSimilarity(source, target, rotation=rotation)
    parameters = transform.as_vector()
    parameter_range = np.hstack((parameters[:2], target.range()))
    noise = (parameter_range * noise_std *
             np.random.randn(transform.n_parameters))
    return Similarity.init_identity(source.n_dims).from_vector(parameters + noise)
def skew_shape(pointcloud, theta, phi):
    r"""
    Method that skews the provided pointcloud.

    Parameters
    ----------
    pointcloud : `menpo.shape.PointCloud`
        The shape to distort.
    theta : `float`
        The skew angle over x axis (tan(theta)).
    phi : `float`
        The skew angle over y axis (tan(phi)).

    Returns
    -------
    skewed_shape : `menpo.shape.PointCloud`
        The skewed (distorted) pointcloud.
    """
    rotate_ccw = Similarity.init_identity(pointcloud.n_dims)
    # Create skew matrix
    h_matrix = np.ones((3, 3))
    h_matrix[0, 1] = np.tan(theta * np.pi / 180.)
    h_matrix[1, 0] = np.tan(phi * np.pi / 180.)
    h_matrix[:2, 2] = 0.
    h_matrix[2, :2] = 0.
    r = Affine(h_matrix)
    t = Translation(-pointcloud.centre(), skip_checks=True)
    # Translate to origin, rotate counter-clockwise, then translate back
    rotate_ccw.compose_before_inplace(t)
    rotate_ccw.compose_before_inplace(r)
    rotate_ccw.compose_before_inplace(t.pseudoinverse())

    return rotate_ccw.apply(pointcloud)
Exemple #3
0
    def _recursive_procrustes(self):
        r"""
        Recursively calculates a procrustes alignment.
        """
        global mean_pointcloud, PointCloud, Similarity
        if mean_pointcloud is None or PointCloud is None or Similarity is None:
            from menpo.shape import mean_pointcloud, PointCloud
            from menpo.transform import Similarity
        if self.n_iterations > self.max_iterations:
            return False
        new_tgt = mean_pointcloud([PointCloud(t.aligned_source().points,
                                              copy=False)
                                   for t in self.transforms])
        # rescale the new_target to be the same size as the original about
        # it's centre
        rescale = Similarity.init_identity(new_tgt.n_dims)

        s = UniformScale(self.initial_target_scale / new_tgt.norm(),
                         self.n_dims, skip_checks=True)
        t = Translation(-new_tgt.centre(), skip_checks=True)
        rescale.compose_before_inplace(t)
        rescale.compose_before_inplace(s)
        rescale.compose_before_inplace(t.pseudoinverse())
        rescale.apply_inplace(new_tgt)
        # check to see if we have converged yet
        delta_target = np.linalg.norm(self.target.points - new_tgt.points)
        if delta_target < 1e-6:
            return True
        else:
            self.n_iterations += 1
            for t in self.transforms:
                t.set_target(new_tgt)
            self.target = new_tgt
            return self._recursive_procrustes()
Exemple #4
0
def test_similarity_2d_from_vector():
    params = np.array([0.2, 0.1, 1, 2])
    h**o = np.array([[params[0] + 1, -params[1], params[2]],
                     [params[1], params[0] + 1, params[3]], [0, 0, 1]])

    sim = Similarity.init_identity(2).from_vector(params)

    assert_almost_equal(sim.h_matrix, h**o)
def test_similarity_2d_from_vector():
    params = np.array([0.2, 0.1, 1, 2])
    h**o = np.array([[params[0] + 1, -params[1], params[2]],
                     [params[1], params[0] + 1, params[3]],
                     [0, 0, 1]])

    sim = Similarity.init_identity(2).from_vector(params)

    assert_equal(sim.h_matrix, h**o)
Exemple #6
0
def test_similarity_identity_3d():
    assert_allclose(Similarity.init_identity(3).h_matrix, np.eye(4))
def test_similarity_identity_3d():
    assert_allclose(Similarity.init_identity(3).h_matrix,
                    np.eye(4))