def run_test_suite(verbose=False): ts = generate_test_suite() path = str(TempDirectory.create_new() / 'mb.py') with open(path, 'wt') as f: f.write(ts) args = ['', path] if verbose: args.append('-v') tests_passed = nose.run(argv=args) TempDirectory.delete_all() if tests_passed: sys.exit(0) else: sys.exit(1)
def __call__(self, img_generator): test_path = TempDirectory.create_new() / 'menpobench_test_images' # Save images down to mat file images_to_mat(img_generator, test_path) # Call matlab bridge to test file - will drop out a result mat invoke_matlab( "addpath('{}'); menpobench_matlab_fit('{}', '{}');".format( matlab_functions_dir(), self.method_path, test_path)) return load_matlab_results(test_path)
def __call__(self, img_generator): test_path = TempDirectory.create_new() / "menpobench_test_images" # Save images down to mat file images_to_mat(img_generator, test_path) # Call matlab bridge to test file - will drop out a result mat invoke_matlab( "addpath('{}'); menpobench_matlab_fit('{}', '{}');".format( matlab_functions_dir(), self.method_path, test_path ) ) return load_matlab_results(test_path)
def invoke_benchmark( experiment_name, output_dir=None, overwrite=False, matlab=False, upload=False, force=False, force_upload=False ): print("") print(centre_str("- - - - M E N P O B E N C H - - - -")) if upload: if not can_upload(): raise MenpoCDNCredentialsMissingError( "MENPO_CDN_S3_ACCESS_KEY and MENPO_CDN_S3_SECRECT_KEY both are" " needed to upload cached results" ) print(centre_str("** MENPO CDN UPLOAD ENABLED **")) if force_upload: print(centre_str("** UPLOAD FORCED **")) print(centre_str("v" + menpobench.__version__)) print(centre_str("config: {}".format(experiment_name))) if output_dir is not None: print(centre_str("output: {}".format(output_dir))) print(centre_str("cache: {}".format(resolve_cache_dir()))) if force: print(centre_str("FORCED RECOMPUTATION ENABLED")) # Load the experiment and check it's schematically valid ex = retrieve_experiment(experiment_name) # Check if we have any dependency on matlab if ex.depends_on_matlab: print(centre_str("matlab: {}".format(resolve_matlab_bin_path()))) print("") if output_dir is not None: # Handle the creation of the output directory output_dir = Path(norm_path(output_dir)) if output_dir.is_dir(): if not overwrite: raise OutputDirExistsError( "Output directory {} already exists.\n" "Pass '--overwrite' if you want menpobench to delete this " "directory automatically.".format(output_dir) ) else: print("--overwrite passed and output directory {} exists - " "deleting\n".format(output_dir)) shutil.rmtree(str(output_dir)) output_dir.mkdir() errors_dir = output_dir / "errors" results_dir = output_dir / "results" errors_dir.mkdir() results_dir.mkdir() results_trainable_dir = results_dir / "trainable_methods" results_untrainable_dir = results_dir / "untrainable_methods" errors_trainable_dir = errors_dir / "trainable_methods" errors_untrainable_dir = errors_dir / "untrainable_methods" save_yaml(ex.config, str(output_dir / "experiment.yaml")) run = partial( run_method, ex, upload=upload, force=force, force_upload=force_upload, matlab=matlab, output=(output_dir is not None), ) try: if ex.n_trainable_methods > 0: print(centre_str("I. TRAINABLE METHODS")) if output_dir is not None: results_trainable_dir.mkdir() errors_trainable_dir.mkdir() else: results_trainable_dir = None errors_trainable_dir = None for i, train in enumerate(ex.trainable_methods, 1): print(centre_str("{}/{} - {}".format(i, ex.n_trainable_methods, train), c="=")) run(train, trainable=True, errors_dir=errors_trainable_dir, results_dir=results_trainable_dir) if ex.n_untrainable_methods > 0: print(centre_str("II. UNTRAINABLE METHODS", c=" ")) if output_dir is not None: results_untrainable_dir.mkdir() errors_untrainable_dir.mkdir() else: results_untrainable_dir = None errors_untrainable_dir = None for i, test in enumerate(ex.untrainable_methods, 1): print(centre_str("{}/{} - " "{}".format(i, ex.n_untrainable_methods, test), c="=")) run(test, trainable=False, errors_dir=errors_untrainable_dir, results_dir=results_untrainable_dir) # We now have all the results computed - draw the CED curves. if output_dir is not None: plot_ceds(output_dir) finally: TempDirectory.delete_all()
def invoke_benchmark(experiment_name, output_dir=None, overwrite=False, matlab=False, upload=False, force=False, force_upload=False): print('') print(centre_str('- - - - M E N P O B E N C H - - - -')) if upload: if not can_upload(): raise MenpoCDNCredentialsMissingError( 'MENPO_CDN_S3_ACCESS_KEY and MENPO_CDN_S3_SECRECT_KEY both are' ' needed to upload cached results') print(centre_str('** MENPO CDN UPLOAD ENABLED **')) if force_upload: print(centre_str('** UPLOAD FORCED **')) print(centre_str('v' + menpobench.__version__)) print(centre_str('config: {}'.format(experiment_name))) if output_dir is not None: print(centre_str('output: {}'.format(output_dir))) print(centre_str('cache: {}'.format(resolve_cache_dir()))) if force: print(centre_str('FORCED RECOMPUTATION ENABLED')) # Load the experiment and check it's schematically valid ex = retrieve_experiment(experiment_name) # Check if we have any dependency on matlab if ex.depends_on_matlab: print(centre_str('matlab: {}'.format(resolve_matlab_bin_path()))) print('') if output_dir is not None: # Handle the creation of the output directory output_dir = Path(norm_path(output_dir)) if output_dir.is_dir(): if not overwrite: raise OutputDirExistsError( "Output directory {} already exists.\n" "Pass '--overwrite' if you want menpobench to delete this " "directory automatically.".format(output_dir)) else: print('--overwrite passed and output directory {} exists - ' 'deleting\n'.format(output_dir)) shutil.rmtree(str(output_dir)) output_dir.mkdir() errors_dir = output_dir / 'errors' results_dir = output_dir / 'results' errors_dir.mkdir() results_dir.mkdir() results_trainable_dir = results_dir / 'trainable_methods' results_untrainable_dir = results_dir / 'untrainable_methods' errors_trainable_dir = errors_dir / 'trainable_methods' errors_untrainable_dir = errors_dir / 'untrainable_methods' save_yaml(ex.config, str(output_dir / 'experiment.yaml')) run = partial(run_method, ex, upload=upload, force=force, force_upload=force_upload, matlab=matlab, output=(output_dir is not None)) try: if ex.n_trainable_methods > 0: print(centre_str('I. TRAINABLE METHODS')) if output_dir is not None: results_trainable_dir.mkdir() errors_trainable_dir.mkdir() else: results_trainable_dir = None errors_trainable_dir = None for i, train in enumerate(ex.trainable_methods, 1): print( centre_str('{}/{} - {}'.format(i, ex.n_trainable_methods, train), c='=')) run(train, trainable=True, errors_dir=errors_trainable_dir, results_dir=results_trainable_dir) if ex.n_untrainable_methods > 0: print(centre_str('II. UNTRAINABLE METHODS', c=' ')) if output_dir is not None: results_untrainable_dir.mkdir() errors_untrainable_dir.mkdir() else: results_untrainable_dir = None errors_untrainable_dir = None for i, test in enumerate(ex.untrainable_methods, 1): print( centre_str('{}/{} - ' '{}'.format(i, ex.n_untrainable_methods, test), c='=')) run(test, trainable=False, errors_dir=errors_untrainable_dir, results_dir=results_untrainable_dir) # We now have all the results computed - draw the CED curves. if output_dir is not None: plot_ceds(output_dir) finally: TempDirectory.delete_all()
def _unpacked_cache_dir(self): if self._unpacked_temp_dir is None: self._unpacked_temp_dir = TempDirectory.create_new() return self._unpacked_temp_dir