Exemple #1
0
def single_experiment(x, y, mode):

    N = 1
    inputs = []
    start_time = time.time()
    model = Model(N, 7, 7, x, y, mode)
    i = 0
    while True:
        print("step : " + str(i))
        show_grid(model, 2)
        model.step()
        running_time = time.time() - start_time
        i += 1
        agent_perc = model.datacollector.get_agent_vars_dataframe()
        if (running_time >= 20 or agent_perc['Position'][-1] == (3, 6)):
            break
    running_time = time.time() - start_time
    print("runningtime : " + str(running_time))
    #inputs.append(IF.Inputs_Function(agent_perc))
    #print(agent_perc[['View','Position', 'Behaviour', 'Light Perception','Sound Perception']][0:100])
    figure = plt.figure(3)
    _ = plt.title('Sound Perception during steps')
    steps = agent_perc['Iterations'].tolist()
    _ = plt.axis([steps[0], steps[-1], 0.4, 1.])
    _ = plt.plot(steps, agent_perc['Sound Perception'].tolist())
    figure = plt.figure(4)
    _ = plt.title('Light Perception during steps')
    _ = plt.axis([steps[0], steps[-1], 0., 60.])
    _ = plt.plot(steps, agent_perc['Light Perception'].tolist())
    agent_perc.head()
    plt.show()
Exemple #2
0
    def __init__(self,
                 model,
                 pos,
                 direction,
                 speed=1,
                 active=True,
                 trace=None):
        """
        Initializes an Agent
        :param model: The model that the agent lives in.
        :param pos: The initial position in (x, y)
        :param direction: The initial agent direction as a Direction-object
        :param speed: The initial speed.
        :param active: Whether or not the agent is not eliminated.
        :param trace: A list of positions that the agent occupied during the last step (just for pre-initialization)
        """
        if model is None:
            # use an empty model if an agent is used to play against an online game
            model = Model()
            super().__init__(None, model)
        else:
            super().__init__(model.next_id(), model)
        self.pos = pos
        self.direction = direction
        self.speed = speed
        self.active = active
        self.deadline = None
        # Holds all cells that were visited in the last step
        if trace is None:
            self.trace = []
        else:
            self.trace = trace

        self.action = None
        self.elimination_step = -1  # Saves the step that the agent was eliminated in (-1 if still active)
Exemple #3
0
    def __init__(self):
        Model.__init__(self)
        self.discussion_post = 0
        self.discussion_social_post = 0

        self.total_chat = 0
        self.total_social_chat = 0

        # counters for current period
        self.chat_count = 0
        self.chat_social_count = 0

        self.step_count = 0
Exemple #4
0
        for i, x in enumerate(espacio.grid):
            for j, y in enumerate(x):
                n_individuos_en_celda = len(y)
                cuenta[i][j] = n_individuos_en_celda
                total += n_individuos_en_celda
        
        saturacion = total / espacio.height*espacio.width
        ##Luego se muestra una representación
        plt.figure(figsize = figsize)
        plt.imshow(cuenta, vmin = 0, vmax = saturacion)
        plt.colorbar()
        plt.show()
        
if __name__=='__main__':
    import networkx as nx
    modelo = Model()
    modelo.num_ind = 10
    class Individuo(Agent):
        def __init__(self, unique_id, model, edad, sexo):
            super().__init__(unique_id, model)
            self.model = model
            self.edad = edad
            self.sexo = sexo
    
    ciudad = Ciudad(modelo, Individuo)
    ciudad.generarindividuos()
    #Se crean las casas distribuyendo los individuos
    ciudad.crear_hogares()
    
    #Se agrega una tienda a la ciudad y se conecta con todas las casas
    ciudad.crear_nodo('aurrera', tipo='tienda', tamano=10)
Exemple #5
0
    def __init__(self, x, y, agent_type):
        self.x = x
        self.y = y
        self.type = agent_type

    def step(self, model):
        neighbors = model.grid.get_neighbors(self.x, self.y, moore=True)
        similar = 0
        for neighbor in neighbors:
            if neighbor.type == self.type:
                similar += 1

        # If unhappy, move:
        if similar < model.homophily:
            new_x, new_y = random.choice(mode.get_empty())
            grid[self.y][self.x] = None
            grid[new_y][new_x] = self
        else:
            model.happy += 1


if __name__ == "__main__":
    model = Model(10, 10, 0.8, 0.2, 3)
    while model.happy < model.model.schedule.get_agent_count():
        model.go()





Exemple #6
0
PMSM = random.uniform(.02,.05)
MSMandHIV = 0.001917
NotMSMandHIV = 0.001509
MSMacquire =  26200/(321039839*PMSM*(1-MSMandHIV/PMSM))
NotMSMacquire = 8800/(321039839*(1-PMSM))
PHIV=[MSMandHIV/PMSM,NotMSMandHIV/(1-PMSM)]
AcHIV=[MSMacquire/365,NotMSMacquire/365]
if ExcludeMSM:
    Eligibility= .38/(1-PMSM)
else:
    Eligibility= .38 + PMSM*(1-PHIV[0])
a=time.time()
Model = MoneyModel(agentnum)
print('Running Model')
for i in tqdm(range(365)): 
	Model.step()
data = Model.datacollector.get_model_vars_dataframe()
b=time.time()
print(str((b-a)/60)+' Minutes Elapsed')

Date= str(random.randint(1,9999999))

file_Name = Date+'HIVDetected'+'.pickle'
fileObject = open(file_Name,'wb') 
pickle.dump([a.HIVDetected for a in Model.schedule.agents],fileObject, protocol=2)   
fileObject.close()
file_Name = Date+'HIVDonations'+'.pickle'
fileObject = open(file_Name,'wb') 
pickle.dump([a.HIVDonation for a in Model.schedule.agents],fileObject, protocol=2)   
fileObject.close()
file_Name = Date+'HIV'+'.pickle'
Exemple #7
0
 def setUp(self):
     self.original_games_path = os.path.abspath(
         "../..") + "/res/originalGames/"
     self.test_games = os.listdir(self.original_games_path)
     self.model = Model()
     self.maxDiff = None