Exemple #1
0
def attention_bias_local_2d_block(mesh,
                                  h_dim,
                                  w_dim,
                                  memory_h_dim,
                                  memory_w_dim,
                                  dtype=tf.int32):
  """Bias for attention for local blocks where attention to right is disallowed.

  Create the bias matrix by using two separate masks, one for the memory part
  which doesn't overlap with the query and second which interacts with the query
  and should be disallowed to look to the right of the current query position.

  Args:
    mesh: a MeshTensorflow object
    h_dim: a mtf.Dimension
    w_dim: a mtf.Dimension
    memory_h_dim: a mtf.Dimension
    memory_w_dim: a mtf.Dimension
    dtype: a tf.dtype

  Returns:
    a mtf.Tensor with shape [block_length, memory_length]
  """
  memory_height = mtf.Dimension(memory_h_dim.name, h_dim.size)
  memory_width = mtf.Dimension(memory_w_dim.name, w_dim.size)
  mask_top_visible = mtf.zeros(mesh, [h_dim, memory_height], dtype=dtype)
  mask_left_visible = mtf.zeros(mesh, [w_dim, memory_width], dtype=dtype)
  mask_query = mtf.greater(
      mtf.range(mesh, memory_height, dtype=tf.int32),
      mtf.range(mesh, memory_width, dtype=dtype))
  width_mask = mtf.concat([mask_left_visible, mask_query], memory_width.name)
  mask = mtf.cast(
      mtf.concat([mask_top_visible, width_mask], memory_height.name),
      dtype=tf.float32) * -1e9
  return mask
Exemple #2
0
def attention_bias_local_block(mesh, block_length, memory_length,
                               dtype=tf.int32):
  """Bias for attention for local blocks where attention to right is disallowed.

  Create the bias matrix by using two separate masks, one for the memory part
  which doesn't overlap with the query and second which interacts with the query
  and should be disallowed to look to the right of the current query position.

  Args:
    mesh: a MeshTensorflow object
    block_length: a mtf.Dimension
    memory_length: a mtf.Dimension
    dtype: a tf.dtype

  Returns:
    a mtf.Tensor with shape [block_length, memory_length]
  """
  memory_length = mtf.Dimension(memory_length.name, block_length.size)
  memory_mask = mtf.zeros(mesh, [block_length, memory_length], dtype=dtype)

  mask = mtf.cast(mtf.less(mtf.range(mesh, block_length, dtype=dtype),
                           mtf.range(mesh, memory_length, dtype=dtype)),
                  dtype=dtype)
  mask = mtf.cast(
      mtf.concat([memory_mask, mask], memory_length.name),
      dtype=tf.float32) * -1e9
  return mask
Exemple #3
0
def masked_local_attention_1d_incremental(x,
                                          prev_k,
                                          prev_v,
                                          step_num,
                                          master_dtype=None,
                                          slice_dtype=None,
                                          params=None,
                                          name=None):
  """Incremental local self-attention (one decode step).

  Incremental version of masked_local_attention_1d()

  Args:
    x: a mtf.Tensor with shape [batch..., io_channels]
    prev_k: mtf.Tensor with shape
       [batch..., heads, window_length, kv_channels]
    prev_v: mtf.Tensor with shape
       [batch..., heads, window_length, kv_channels]
    step_num: mtf Scalar with dtype tf.int32
    master_dtype: a tf.dtype (deprecated)
    slice_dtype: a tf.dtype (deprecated)
    params: a quadruple of Tensors (see multihead_attention_params())
    name: an optional string.

  Returns:
    y: A mtf.Tensor with shape [batch..., io_channels]
    new_k: mtf.Tensor with shape
       [batch..., heads, window_length, kv_channels]
    new_v: mtf.Tensor with shape
       [batch..., heads, window_length, kv_channels]

  Raises:
    ValueError: if the dimensions do not match.
  """
  batch_dims = x.shape.dims[:-1]
  io_channels = x.shape.dims[-1]
  heads, window_length, kv_channels = prev_k.shape.dims[-3:]
  with tf.variable_scope(name, default_name="masked_local_attention_1d"):
    if params is None:
      wq, wk, wv, wo = multihead_attention_vars(
          x.mesh, heads, io_channels, kv_channels,
          master_dtype, slice_dtype, x.dtype)
    else:
      wq, wk, wv, wo = params
    q = mtf.einsum([x, wq], mtf.Shape(batch_dims + [heads, kv_channels]))
    k = mtf.einsum([x, wk], mtf.Shape(batch_dims + [heads, kv_channels]))
    v = mtf.einsum([x, wv], mtf.Shape(batch_dims + [heads, kv_channels]))
    current_position = mtf.equal(
        mtf.range(x.mesh, window_length, dtype=tf.int32),
        mtf.mod(step_num, window_length.size))
    k = mtf.where(current_position, k, prev_k, output_shape=prev_k.shape)
    v = mtf.where(current_position, v, prev_v, output_shape=prev_v.shape)
    o = dot_product_attention(q, k, v, mask=None)
    y = mtf.einsum([o, wo], x.shape)
    return y, k, v
Exemple #4
0
    def inner_loop(i, alive_seq, alive_log_probs, finished_seq,
                   finished_scores, finished_flags, *states):
        """Inner beam search loop.

    There are three groups of tensors, alive, finished, and topk.
    The alive group contains information about the current alive sequences
    The topk group contains information about alive + topk current decoded words
    the finished group contains information about finished sentences, that is,
    the ones that have decoded to <EOS>. These are what we return.
    The general beam search algorithm is as follows:
    While we haven't terminated (pls look at termination condition)
      1. Grow the current alive to get beam*2 topk sequences
      2. Among the topk, keep the top beam_size ones that haven't reached EOS
      into alive
      3. Among the topk, keep the top beam_size ones have reached EOS into
      finished
    Repeat
    To make things simple with using fixed size tensors, we will end
    up inserting unfinished sequences into finished in the beginning. To stop
    that we add -ve INF to the score of the unfinished sequence so that when a
    true finished sequence does appear, it will have a higher score than all the
    unfinished ones.

    Args:
      i: loop index
      alive_seq: Topk sequences decoded so far [batch_size, beam_size, i+1]
      alive_log_probs: probabilities of the beams. [batch_size, beam_size]
      finished_seq: Current finished sequences.
        [batch_size, beam_size, i+1]
      finished_scores: scores for each of these sequences.
        [batch_size, beam_size]
      finished_flags: finished bools for each of these sequences.
        [batch_size, beam_size]
      *states: mtf Tensors

    Returns:
      Tuple of
        (Incremented loop index
         New alive sequences,
         Log probs of the alive sequences,
         New finished sequences,
         Scores of the new finished sequences,
         Flags indicating which sequence in finished as reached EOS,
         dict of final decoding states)
    """
        states = [
            mtf.replace_dimensions(state, batch_and_beam_dim,
                                   [batch_dim, beam_dim]) for state in states
        ]
        # Each inner loop, we carry out three steps:
        # 1. Get the current topk items.
        # 2. Extract the ones that have finished and haven't finished
        # 3. Recompute the contents of finished based on scores.
        (top2k_seq, top2k_log_probs, top2k_scores, top2k_finished, new_states,
         first_selector) = grow_topk(i, alive_seq, alive_log_probs, states)
        with tf.variable_scope("grow_alive"):
            alive_seq, alive_log_probs, _, second_selector = grow_alive(
                top2k_seq, top2k_scores, top2k_log_probs, top2k_finished)
        with tf.variable_scope("grow_finished"):
            finished_seq, finished_scores, finished_flags, _ = grow_finished(
                finished_seq, finished_scores, finished_flags, top2k_seq,
                top2k_scores, top2k_finished)
        old_beam_dim = mtf.Dimension("old_beam", beam_dim.size)
        selector = mtf.einsum([
            mtf.rename_dimension(first_selector, beam_dim.name,
                                 old_beam_dim.name), second_selector
        ],
                              output_shape=[batch_dim, old_beam_dim, beam_dim])
        gathered_states = []
        if use_tpu and layout is not None and mesh_shape is not None:
            # This hack combines the beam dimension with some of the batch dimension.
            # It makes gathering faster on TPU.
            #
            # Instead of multiplying by a [beam, beam] selector matrix, we instead
            # multiply by a [minor_batch*beam, minor_batch*beam] selector matrix.
            # This is theoretically more FLOPs, but it brings the matrix size closer
            # to the magic optimal value of 128.
            #
            # TODO(noam): file a bug with the XLA team to do this automatically
            major_batch_size = mtf.tensor_dim_to_mesh_dim_size(
                layout, mesh_shape, batch_dim)
            major_batch = mtf.Dimension(batch_dim.name, major_batch_size)
            minor_batch = mtf.Dimension("minor_batch",
                                        batch_dim.size // major_batch.size)
            old_minor_batch = mtf.Dimension("old_minor_batch",
                                            minor_batch.size)
            old_combined = mtf.Dimension("old_combined",
                                         minor_batch.size * beam_dim.size)
            combined = mtf.Dimension("new_combined", old_combined.size)
            same_minor_batch = mtf.to_float(
                mtf.equal(mtf.range(mesh, old_minor_batch, tf.float32),
                          mtf.range(mesh, minor_batch, tf.float32)))
            selector = mtf.reshape(
                selector, [major_batch, minor_batch, old_beam_dim, beam_dim])
            selector = mtf.einsum([selector, same_minor_batch],
                                  output_shape=[
                                      major_batch, old_minor_batch,
                                      old_beam_dim, minor_batch, beam_dim
                                  ],
                                  reduced_dims=[])
            selector = mtf.reshape(selector,
                                   [major_batch, old_combined, combined])
            for state in new_states:
                s = mtf.replace_dimensions(state, [batch_dim, beam_dim],
                                           [major_batch, old_combined])
                s = mtf.einsum([s, mtf.cast(selector, state.dtype)],
                               reduced_dims=[old_combined],
                               output_shape=mtf.replace_dimensions(
                                   state.shape, [batch_dim, beam_dim],
                                   [major_batch, combined]))
                gathered_states.append(
                    mtf.replace_dimensions(s, [major_batch, combined],
                                           batch_and_beam_dim))
        else:
            for state in new_states:
                state = mtf.einsum([
                    mtf.rename_dimension(state, beam_dim.name,
                                         old_beam_dim.name),
                    mtf.cast(selector, state.dtype)
                ],
                                   reduced_dims=[old_beam_dim],
                                   output_shape=state.shape)
                state = mtf.replace_dimensions(state, [batch_dim, beam_dim],
                                               batch_and_beam_dim)
                gathered_states.append(state)

        return (i + 1, alive_seq, alive_log_probs, finished_seq,
                finished_scores, finished_flags) + tuple(gathered_states)
Exemple #5
0
def multihead_self_attention_incremental(query_antecedent,
                                         prev_k,
                                         prev_v,
                                         step_num,
                                         master_dtype,
                                         slice_dtype,
                                         name="multihead_attention"):
  """Incremental self-attention (one decode step).

  In order to use only one variable containing the four weight matrices
  packed together, we insist that the query and memory antecedents have the
  same dimensionality (io_channels) and that the keys and values have the
  same dimensionality (kv_channels).

  Args:
    query_antecedent: a mtf.Tensor with shape [batch..., io_channels]
    prev_k: mtf.Tensor with shape [batch..., heads, memory_length, kv_channels]
    prev_v: mtf.Tensor with shape [batch..., heads, memory_length, kv_channels]
    step_num: mtf Scalar with dtype tf.int32
    master_dtype: a tf.dtype
    slice_dtype: a tf.dtype
    name: an optional string.

  Returns:
    y: A mtf.Tensor with shape [batch..., io_channels]
    new_k: mtf.Tensor with shape [batch..., heads, memory_length, kv_channels]
    new_v: mtf.Tensor with shape [batch..., heads, memory_length, kv_channels]

  Raises:
    ValueError: if the dimensions do not match.
  """
  batch_dims = query_antecedent.shape.dims[:-1]
  io_channels = query_antecedent.shape.dims[-1]
  heads, memory_length, kv_channels = prev_k.shape.dims[-3:]
  with tf.variable_scope(name, default_name="multihead_attention"):
    wq, wk, wv, wo = multihead_attention_vars(
        query_antecedent.mesh, heads, io_channels, kv_channels,
        master_dtype, slice_dtype, query_antecedent.dtype)
    memory_antecedent = query_antecedent
    q = mtf.einsum(
        [query_antecedent, wq],
        mtf.Shape(batch_dims + [heads, kv_channels]))
    k = mtf.einsum(
        [memory_antecedent, wk],
        mtf.Shape(batch_dims + [heads, kv_channels]))
    v = mtf.einsum(
        [memory_antecedent, wv],
        mtf.Shape(batch_dims + [heads, kv_channels]))
    k = prev_k + mtf.multiply(
        k, mtf.one_hot(step_num, memory_length, dtype=prev_k.dtype),
        output_shape=prev_k.shape)
    v = prev_v + mtf.multiply(
        v, mtf.one_hot(step_num, memory_length, dtype=prev_v.dtype),
        output_shape=prev_v.shape)

    mask = mtf.cast(
        mtf.greater(mtf.range(
            query_antecedent.mesh, memory_length, dtype=tf.int32), step_num),
        q.dtype) * -1e9
    o = dot_product_attention(q, k, v, mask)
    y = mtf.einsum([o, wo], query_antecedent.shape)
    return y, k, v
Exemple #6
0
def masked_local_attention_1d(x,
                              kv_channels,
                              heads,
                              window_size=128,
                              master_dtype=tf.float32,
                              slice_dtype=tf.float32,
                              length_per_split=None,
                              return_kv=None,
                              params=None,
                              name=None):
  """Attention to the source position and a neighborhood to the left of it.

  Attention for a given query position p can only see memory positions
  in the range (p - window_size, p].

  Args:
    x: a mtf.Tensor with shape batch_dims + [length, io_channels]
    kv_channels: a mtf.Dimension (the size of the key and value vectors)
    heads: a mtf.Dimension (the number of heads)
    window_size: an integer
    master_dtype: a tf.dtype (deprecated - use params arg)
    slice_dtype: a tf.dtype (deprecated - use params arg)
    length_per_split: an optional integer indicating the part of the length
      dimension per processor.  You can omit if the length dimension is not
      split.
    return_kv: an optional list onto which to append the computed k and v.
    params: an optional quadruple of Tensors (see multihead_attention_params())
    name: an optional string.

  Returns:
    a Tensor with the same shape as x

  Raises:
    ValueError: if channels or depth don't match.
  """
  with tf.variable_scope(
      name, default_name="masked_local_attention_1d", values=[x]):

    batch_dims = x.shape.dims[:-2]
    length, io_channels = x.shape.dims[-2:]
    if params is None:
      wq, wk, wv, wo = multihead_attention_vars(
          x.mesh, heads, io_channels, kv_channels,
          master_dtype, slice_dtype, x.dtype)
    else:
      wq, wk, wv, wo = params

    # Get query q, keys k and values v.
    qkv_shape = mtf.Shape(batch_dims + [heads, length, kv_channels])
    q = mtf.einsum([x, wq], qkv_shape)
    k = mtf.einsum([x, wk], qkv_shape)
    v = mtf.einsum([x, wv], qkv_shape)
    if return_kv is not None:
      return_kv.extend([k, v])

    # Choose a suitable block size.
    # We choose the greatest divisor of length_per_split less than or equal
    # to max(window_size, 128)
    if length_per_split is None:
      length_per_split = length.size
    block_length = max(window_size, 128)
    while length_per_split % block_length != 0:
      block_length -= 1

    query_block_length = mtf.Dimension("query_block_length", block_length)
    memory_block_length = mtf.Dimension("memory_block_length", block_length)
    # The num_blocks dimension gets the same name as the length dimension,
    # so it will be split in the same way.
    num_blocks = mtf.Dimension(length.name, length.size // block_length)
    q_shape = batch_dims + [heads, num_blocks, query_block_length, kv_channels]
    kv_shape = batch_dims + [
        heads, num_blocks, memory_block_length, kv_channels]
    q = mtf.reshape(q, q_shape)
    k = mtf.reshape(k, kv_shape)
    v = mtf.reshape(v, kv_shape)
    # augment the keys and values for each block with keys and values for
    # the previous window_size timesteps.
    k = mtf.left_halo_exchange(k, num_blocks, memory_block_length, window_size)
    v = mtf.left_halo_exchange(v, num_blocks, memory_block_length, window_size)
    padded_memory_block_length = mtf.Dimension(
        "memory_block_length", window_size + block_length)
    mpos = mtf.range(x.mesh, padded_memory_block_length, tf.float32)
    qpos = mtf.range(x.mesh, query_block_length, tf.float32) + window_size
    # prevent looking forward
    mask = mtf.cast(mtf.greater(mpos, qpos), x.dtype) * -1e9
    # prevent looking >=block_length timesteps backward
    mask += mtf.cast(mtf.less_equal(mpos, qpos - block_length), x.dtype) * -1e9
    # Note: The first window_size-1 positions can see back into pre-time
    # where all the keys and values are zero.  We could mask this out, but we
    # don't.
    o = dot_product_attention(q, k, v, mask=mask)
    o = mtf.reshape(o, batch_dims + [heads, length, kv_channels])
    return mtf.einsum([o, wo], mtf.Shape(batch_dims + [length, io_channels]))
Exemple #7
0
def multihead_self_attention_memory_compressed(x,
                                               mask_right,
                                               compression_factor,
                                               kv_channels,
                                               heads,
                                               dropout=0.0,
                                               dropout_broadcast_dims=None,
                                               master_dtype=tf.float32,
                                               slice_dtype=tf.float32,
                                               name="multihead_attention"):
  """Memory-compressed self-attention.

  The memory is first average-pooled (strided) to make it shorter by
  a factor of compression_factor.

  Args:
    x: a mtf.Tensor with shape
      [<batch_dims>, query_length, io_channels]
    mask_right: a boolean
    compression_factor: an integer
    kv_channels: a mtf.Dimension (the size of the key and value vectors)
    heads: a mtf.Dimension (the number of heads)
    dropout: a floating point value
    dropout_broadcast_dims: an optional list of mtf.Dimension
    master_dtype: a tf.dtype
    slice_dtype: a tf.dtype
    name: an optional string.

  Returns:
    A mtf.Tensor with shape [batch, query_length, io_channels]

  Raises:
    ValueError: if the dimensions do not match.
  """
  batch_dims = x.shape.dims[:-2]
  length, io_channels = x.shape.dims[-2:]
  with tf.variable_scope(name,
                         default_name="compressed_attention",
                         values=[x]):
    wq, wk, wv, wo = multihead_attention_vars(
        x.mesh, heads, io_channels, kv_channels,
        master_dtype, slice_dtype, x.dtype)
    memory_antecedent = compress_mean(x, length, compression_factor)
    memory_antecedent = rename_length_to_memory_length(memory_antecedent)
    memory_length = memory_antecedent.shape.dims[-2]
    q = mtf.einsum(
        [x, wq],
        mtf.Shape(batch_dims + [heads, length, kv_channels]))
    k = mtf.einsum(
        [memory_antecedent, wk],
        mtf.Shape(batch_dims + [heads, memory_length, kv_channels]))
    v = mtf.einsum(
        [memory_antecedent, wv],
        mtf.Shape(batch_dims + [heads, memory_length, kv_channels]))
    if mask_right:
      query_pos = mtf.range(x.mesh, length, dtype=tf.int32)
      memory_pos = (
          mtf.range(x.mesh, memory_length, dtype=tf.int32) * compression_factor
          + (compression_factor - 1))
      mask = mtf.cast(mtf.greater(memory_pos, query_pos), x.dtype) * -1e9
    else:
      mask = None
    o = dot_product_attention(
        q, k, v, mask, dropout, dropout_broadcast_dims, extra_logit=0.0)
    return mtf.einsum(
        [o, wo], mtf.Shape(batch_dims + [length, io_channels]))