def get_activation_fn(params): activation_fn = params.get("activation_fn", "gelu") if activation_fn == "gelu": # https://arxiv.org/abs/1606.08415 return mtf.gelu elif activation_fn == "relu": return mtf.relu elif activation_fn == "sigmoid": return mtf.sigmoid elif activation_fn == "tanh": return mtf.tanh elif activation_fn == "selu": # https://arxiv.org/abs/1706.02515 return mtf.selu elif activation_fn == "elu": # https://arxiv.org/abs/1511.07289 return mtf.elu # swish activations elif activation_fn == "swish": # https://arxiv.org/abs/1710.05941 return mtf.swish # https://arxiv.org/abs/1710.05941, https://arxiv.org/abs/1901.02671 elif activation_fn == "maxsig": return lambda x: mtf.maximum(x, mtf.sigmoid(x)) elif activation_fn == "cosid": return lambda x: mtf.cos(x) - x elif activation_fn == "minsin": return lambda x: mtf.minimum(x, mtf.sin(x)) elif activation_fn == "maxtanh": return lambda x: mtf.maximum(x, mtf.tanh(x)) elif activation_fn == "softplus": return mtf.softplus elif activation_fn == "mish": # https://arxiv.org/abs/1908.08681 return lambda x: x * mtf.tanh(mtf.softplus(x)) elif activation_fn == "tanhexp": # https://arxiv.org/abs/2003.09855 return lambda x: x * mtf.tanh(mtf.exp(x)) elif activation_fn == "lisht": # https://arxiv.org/abs/1901.05894 return lambda x: x * mtf.tanh(x) elif activation_fn == "seagull": # https://arxiv.org/abs/2011.11713 return lambda x: mtf.log(1 + x ** 2) elif activation_fn == "snake": # https://arxiv.org/abs/2006.08195 return lambda x: x + mtf.sin(x) ** 2 else: raise ValueError('unknown activation function "activation_fn" in config')
def get_timing_signal_1d(self, context, length, channels, min_timescale=1.0, max_timescale=1.0e4, start_index=0): """Gets a bunch of sinusoids of different frequencies. Each channel of the input Tensor is incremented by a sinusoid of a different frequency and phase. This allows attention to learn to use absolute and relative positions. Timing signals should be added to some precursors of both the query and the memory inputs to attention. The use of relative position is possible because sin(x+y) and cos(x+y) can be expressed in terms of y, sin(x) and cos(x). In particular, we use a geometric sequence of timescales starting with min_timescale and ending with max_timescale. The number of different timescales is equal to channels / 2. For each timescale, we generate the two sinusoidal signals sin(timestep/timescale) and cos(timestep/timescale). All of these sinusoids are concatenated in the channels dimension. Args: context: mtf context. length: a mtf.Dimension, length of timing signal sequence. channels: a mtf.Dimension, size of timing embeddings to create. The number of different timescales is equal to channels / 2. min_timescale: a float max_timescale: a float start_index: index of first position Returns: a Tensor of timing signals [1, length, channels] """ position = context.get_position() + start_index num_timescales = mtf.constant(context.mesh, channels.size // 2) log_timescale_increment = ( math.log(float(max_timescale) / float(min_timescale)) / mtf.maximum(num_timescales - 1, 1)) channel_dim_name = channels.name inv_timescales = (min_timescale * mtf.exp( mtf.mtf_range(context.mesh, mtf.Dimension(channel_dim_name, channels.size // 2), context.activation_dtype) * -log_timescale_increment) ) scaled_time = position * inv_timescales # Please note that this slightly differs from the published paper. # See a discussion here: # https://github.com/tensorflow/tensor2tensor/pull/177 # concat_dim_name = scaled_time.shape.dimension_names[1] concat_dim_name = channels.name signal = mtf.concat( [mtf.sin(scaled_time), mtf.cos(scaled_time)], concat_dim_name=concat_dim_name) if channels.size % 2 != 0: raise NotImplementedError("Odd channel size not implemented.") new_dims = [mtf.Dimension("expanded", 1) ] + length.shape.dims + channels.shape.dim signal = mtf.reshape(signal, mtf.Shape(new_dims)) return signal
def get_activation_fn(params): activation_fn = params.get("activation_fn", "gelu") if activation_fn == "gelu": # https://arxiv.org/abs/1606.08415 return mtf.gelu elif activation_fn == "relu": return mtf.relu elif activation_fn == "sigmoid": return mtf.sigmoid elif activation_fn == "tanh": return mtf.tanh elif activation_fn == "selu": # https://arxiv.org/abs/1706.02515 return mtf.selu elif activation_fn == "elu": # https://arxiv.org/abs/1511.07289 return mtf.elu elif activation_fn == "abs": return mtf.abs elif activation_fn == "id": return lambda x: x elif activation_fn == "sin": return mtf.sin elif activation_fn == "cos": return mtf.cos elif activation_fn == "sign": return mtf.sign elif activation_fn == "triangle_relax": return lambda x: mtf.sin(x) - mtf.sin(3 * x) / 9 + mtf.sin( 5 * x) / 25 - mtf.sin(7 * x) / 49 elif activation_fn == "square_relax": return lambda x: mtf.cos(x) - mtf.cos(3 * x) / 3 + mtf.cos( 5 * x) / 5 - mtf.cos(7 * x) / 7 elif activation_fn == "spike": return lambda x: 1 / (1 + x**2) elif activation_fn == "spike2": return lambda x: mtf.exp(-x**2) elif activation_fn == "tanhshrink": return lambda x: x - tanh(x) elif activation_fn == "softsign": return lambda x: x / (mtf.abs(x) + 1) elif activation_fn == "softmax": return lambda x: mtf.softmax(x, x.shape[-1]) elif activation_fn == "logsoftmax": return lambda x: mtf.log_softmax(x, x.shape[-1]) elif activation_fn == "bipolarsigmoid": return lambda x: mtf.sigmoid(x) * 2 - 1 elif activation_fn == "rrelu": # https://arxiv.org/abs/1505.00853 def _rrelu_fn(x): negative_scale = random.random() return (negative_scale * mtf.abs(x) + x) / (1 + negative_scale) return _rrelu_fn elif activation_fn == "elish": # https://arxiv.org/abs/1808.00783v1 def _elish_fn(x): cond = mtf.cast(mtf.greater(x, 0), x.dtype) exp = mtf.exp(x) return cond * x / (1 + exp) + (1 - cond) * (exp - 1) / (1 / exp + 1) return _elish_fn # swish activations elif activation_fn == "swish": # https://arxiv.org/abs/1710.05941 return mtf.swish # https://arxiv.org/abs/1710.05941, https://arxiv.org/abs/1901.02671 elif activation_fn == "maxsig": return lambda x: mtf.maximum(x, mtf.sigmoid(x)) elif activation_fn == "cosid": return lambda x: mtf.cos(x) - x elif activation_fn == "minsin": return lambda x: mtf.minimum(x, mtf.sin(x)) elif activation_fn == "maxtanh": return lambda x: mtf.maximum(x, mtf.tanh(x)) elif activation_fn == "softplus": return mtf.softplus elif activation_fn == "mish": # https://arxiv.org/abs/1908.08681 return lambda x: x * mtf.tanh(mtf.softplus(x)) elif activation_fn == "tanhexp": # https://arxiv.org/abs/2003.09855 return lambda x: x * mtf.tanh(mtf.exp(x)) elif activation_fn == "lisht": # https://arxiv.org/abs/1901.05894 return lambda x: x * mtf.tanh(x) elif activation_fn == "seagull": # https://arxiv.org/abs/2011.11713 return lambda x: mtf.log(1 + x**2) elif activation_fn == "snake": # https://arxiv.org/abs/2006.08195 return lambda x: x + mtf.sin(x)**2 elif activation_fn == "roottanh": # made up return lambda x: (x**2 + 1)**(1 / 3) * mtf.tanh(x) elif activation_fn == "softplusmone": # made up return lambda x: mtf.softplus(x) - 1 else: raise ValueError( 'unknown activation function "activation_fn" in config')
def get_activation_fn(params): activation_fn = params.get("activation_fn", "gelu") def _arcsinh(x): return mtf.log(x + mtf.sqrt(1 + x**2)) def _var(x, init): return mtf.get_variable(x.mesh, f"activation-{random.randint(0, 2 ** 32):x}", [], initializer=tf.constant_initializer(init), dtype=x.dtype) def _pos_var(x, val): return mtf.softplus(_var(x, 0)) + val if activation_fn == "gelu": # https://arxiv.org/abs/1606.08415 return mtf.gelu elif activation_fn == "relu": return mtf.relu elif activation_fn == "sigmoid": return mtf.sigmoid elif activation_fn == "tanh": return mtf.tanh elif activation_fn == "selu": # https://arxiv.org/abs/1706.02515 return mtf.selu elif activation_fn == "elu": # https://arxiv.org/abs/1511.07289 return mtf.elu elif activation_fn == "lrelu001": return lambda x: mtf.leaky_relu(x, alpha=0.01) elif activation_fn == "lrelu020": return lambda x: mtf.leaky_relu(x, alpha=0.20) elif activation_fn == "abs": return mtf.abs elif activation_fn == "id": return lambda x: x elif activation_fn == "sin": return mtf.sin elif activation_fn == "cos": return mtf.cos elif activation_fn == "sign": return mtf.sign elif activation_fn == "triangle_relax": return lambda x: mtf.sin(x) - mtf.sin(3 * x) / 9 + mtf.sin( 5 * x) / 25 - mtf.sin(7 * x) / 49 elif activation_fn == "square_relax": return lambda x: mtf.cos(x) - mtf.cos(3 * x) / 3 + mtf.cos( 5 * x) / 5 - mtf.cos(7 * x) / 7 elif activation_fn == "spike": return lambda x: 1 / (1 + x**2) elif activation_fn == "spike2": return lambda x: mtf.exp(-x**2) elif activation_fn == "tanhshrink": return lambda x: x - tanh(x) elif activation_fn == "softsign": return lambda x: x / (mtf.abs(x) + 1) elif activation_fn == "softmax": return lambda x: mtf.softmax(x, x.shape[-1]) elif activation_fn == "logsoftmax": return lambda x: mtf.log_softmax(x, x.shape[-1]) elif activation_fn == "bipolarsigmoid": return lambda x: mtf.sigmoid(x) * 2 - 1 elif activation_fn == "rrelu": # https://arxiv.org/abs/1505.00853 def _rrelu_fn(x): negative_scale = random.random() return (negative_scale * mtf.abs(x) + x) / (1 + negative_scale) return _rrelu_fn elif activation_fn == "elish": # https://arxiv.org/abs/1808.00783v1 def _elish_fn(x): cond = mtf.cast(mtf.greater(x, 0), x.dtype) exp = mtf.exp(x) return cond * x / (1 + exp) + (1 - cond) * (exp - 1) / (1 / exp + 1) return _elish_fn elif activation_fn == "silu": # https://arxiv.org/abs/1710.05941 return mtf.swish elif activation_fn == "arcsinh": return _arcsinh # parametric elif activation_fn == "aria": # https://arxiv.org/abs/1805.08878 return lambda x: x * (_var(x, 0) + _var(x, 1) / (_pos_var(x, 0) + _var( x, 1) * mtf.exp(_var(x, -1) * x)**(1 / _pos_var(x, 1)))) elif activation_fn == "prelu": # https://arxiv.org/abs/1502.01852 return lambda x: mtf.leaky_relu(x, alpha=_var(x, 0.2)) elif activation_fn == "parcsinh": return lambda x: _var(x, 1) * _arcsinh(x * _pos_var(x, 1)) elif activation_fn == "psoftplus": return lambda x: _var(x, 1) * mtf.softplus(x * _var(x, 1)) + _var(x, 0) elif activation_fn == "proottanh": return lambda x: (x**_pos_var(x, 2) + _pos_var(x, 1))**(1 / _pos_var( x, 3)) * mtf.tanh(x) # https://arxiv.org/abs/1710.05941, https://arxiv.org/abs/1901.02671 elif activation_fn == "maxsig": return lambda x: mtf.maximum(x, mtf.sigmoid(x)) elif activation_fn == "cosid": return lambda x: mtf.cos(x) - x elif activation_fn == "minsin": return lambda x: mtf.minimum(x, mtf.sin(x)) elif activation_fn == "maxtanh": return lambda x: mtf.maximum(x, mtf.tanh(x)) elif activation_fn == "softplus": return mtf.softplus elif activation_fn == "mish": # https://arxiv.org/abs/1908.08681 return lambda x: x * mtf.tanh(mtf.softplus(x)) elif activation_fn == "tanhexp": # https://arxiv.org/abs/2003.09855 return lambda x: x * mtf.tanh(mtf.exp(x)) elif activation_fn == "lisht": # https://arxiv.org/abs/1901.05894 return lambda x: x * mtf.tanh(x) elif activation_fn == "seagull": # https://arxiv.org/abs/2011.11713 return lambda x: mtf.log(1 + x**2) elif activation_fn == "snake": # https://arxiv.org/abs/2006.08195 return lambda x: x + mtf.sin(x)**2 elif activation_fn == "roottanh": # made up return lambda x: (x**2 + 1)**(1 / 3) * mtf.tanh(x) elif activation_fn == "softplusmone": # made up return lambda x: mtf.softplus(x) - 1 else: raise ValueError( 'unknown activation function "activation_fn" in config')
exp = mtf.exp(x) return cond * x / (1 + exp) + (1 - cond) * (exp - 1) / (1 / exp + 1) CUSTOM_FNS = { 'lrelu001': lambda x: mtf.leaky_relu(x, alpha=0.01), 'lrelu020': lambda x: mtf.leaky_relu(x, alpha=0.20), 'id': lambda x: x, 'triangle_relax': lambda x: mtf.sin(x) - mtf.sin(3 * x) / 9 + mtf.sin(5 * x) / 25 - mtf.sin( 7 * x) / 49, 'square_relax': lambda x: mtf.cos(x) - mtf.cos(3 * x) / 3 + mtf.cos(5 * x) / 5 - mtf.cos( 7 * x) / 7, 'spike': lambda x: 1 / (1 + x**2), 'spike2': lambda x: mtf.exp(-x**2), 'tanhshrink': lambda x: x - tanh(x), 'softsign': lambda x: x / (mtf.abs(x) + 1), 'softmax': lambda x: mtf.softmax(x, x.shape[-1]), 'logsoftmax': lambda x: mtf.log_softmax(x, x.shape[-1]), 'bipolarsigmoid': lambda x: mtf.sigmoid(x) * 2 - 1,