Exemple #1
0
def obtain_traubs_srcVele(conductivity, run_type='seeg', save=False):
    '''Fetch the potentials for the default run - SEEG section For Traubs column'''
    mesh = meshes.load_just_mesh()
    if run_type == 'seeg':
        pos_list, conductivity, path, sbspt = params.default_run(conductivity)
    elif run_type == 'ecog':
        pos_list, conductivity, path, sbspt = params.ecog_run(size=0.98)
    elif run_type == 'heeg':
        pos_list, conductivity, path, sbspt = params.hippo_eeg_run()
    num_pts = len(pos_list)
    ele_list = params.load_traubs_points()  # points from traubs colum
    num_ele = len(ele_list)
    phi_mat = np.zeros((num_pts, num_ele))
    num_proc = how_many_procs(path, sbspt)
    proc_vals = np.linspace(0, num_pts, num_proc + 1).astype(int)
    for kk in range(num_proc):
        proc_idx = kk + 1  # as proc ids start from 1
        pt_idxs = range(proc_vals[proc_idx - 1], proc_vals[proc_idx])
        f_string = sbspt + str(num_proc) + '_' + str(proc_idx) + '.h5'
        dump_file = load_file(os.path.join(path, f_string), mesh)
        for pt in pt_idxs:
            this_phi = load_vector(dump_file, mesh, str(pt))
            phi_mat[pt, :] = extract_pots(this_phi, np.array(ele_list))
        dump_file.close()
        print('Finished processing proc number: ', proc_idx)
    if save:
        phi_mat_fname = sbspt + conductivity + '_' + run_type + '_traub_phi_mat.npy'
        np.save(os.path.join(path, phi_mat_fname), phi_mat)
    return
Exemple #2
0
def test_few_points():
    mesh = meshes.load_just_mesh()
    pos_list = [[5.196, 22.913, -4.9957], [8.4, 31.4, -6.151],
                [5.5945, 22.699, -5.6637]]
    dump_file = load_file(os.path.join(params.results_path, 'test_del_ih.h5'),
                          mesh)
    phi_1 = load_vector(dump_file, mesh, '0')
    phi_2 = load_vector(dump_file, mesh, '1')
    phi_3 = load_vector(dump_file, mesh, '2')
    print(extract_pots(phi_1, np.array([pos_list[1], pos_list[2]])))
    print(extract_pots(phi_2, np.array([pos_list[0], pos_list[2]])))
    print(extract_pots(phi_3, np.array([pos_list[0], pos_list[1]])))
Exemple #3
0
def obtain_orth_planes(src_label, orig_label, conductivity, save=False):
    ''' Sources placed at src_label, with orth planes meeting at orig_label 
    The pots observed at the corresponding xx, yy, zz planes is reported
    - dumps an npz with arrays corres to orig_label corresp to each plane'''
    mesh = meshes.load_just_mesh()
    pos_list, conductivity, path, sbspt = params.default_run(conductivity)
    sp_pts = params.load_special_points()
    src_x, src_y, src_z = sp_pts[src_label]
    xx, yy, zz = sp_pts[orig_label]
    print('Testing if src location has exact probe point')
    src_idx = find_nearest_avail_pt(pos_list, src_x, src_y, src_z)
    k = np.array((pos_list[src_idx]))
    dists = np.linalg.norm(pos_list - k, axis=1)
    src_idx = np.argmin(dists)
    f_string = which_file(path, sbspt, pos_list, src_idx)
    dump_file = load_file(os.path.join(path, f_string), mesh)
    this_phi = load_vector(dump_file, mesh, str(src_idx))
    planes = fetch_cut_planes(xx, yy, zz, 0.1)
    ### TODO - FUTURE
    ### instead get this from params as a special planes
    ### Planes get dumped from probe_points file instead - so premtively obtain these planes.
    phi_planes = []
    #  plane pots
    for ii, label in enumerate(['x', 'y', 'z']):
        ele_list = planes[ii]
        num_ele = len(ele_list)
        phi_mat = np.zeros((1, num_ele))
        phi_mat[0, :] = extract_pots(this_phi, np.array(ele_list))
        phi_planes.append(phi_mat)
    dump_file.close()
    if save:
        phi_mat_fname = sbspt + conductivity + '_' + src_label + '_' + orig_label + '_phi_mat.npz'
        np.savez(os.path.join(path, phi_mat_fname),
                 xx=phi_planes[0],
                 yy=phi_planes[1],
                 zz=phi_planes[2],
                 x_plane=planes[0],
                 y_plane=planes[1],
                 z_plane=planes[2])
    return
Exemple #4
0
def obtain_unsorted_srcVele(conductivity, save=False):
    '''Fetch the potentials for the default run - SEEG section to test reciprocity'''
    mesh = meshes.load_just_mesh()
    pos_list, conductivity, path, sbspt = params.default_run(conductivity)
    num_pts = len(pos_list)
    phi_mat = np.zeros((num_pts, num_pts))
    num_proc = how_many_procs(path, sbspt)
    proc_vals = np.linspace(0, num_pts, num_proc + 1).astype(int)
    for kk in range(num_proc):
        proc_idx = kk + 1  # as proc ids start from 1
        pt_idxs = range(proc_vals[proc_idx - 1], proc_vals[proc_idx])
        f_string = sbspt + str(num_proc) + '_' + str(proc_idx) + '.h5'
        dump_file = load_file(os.path.join(path, f_string), mesh)
        for pt in pt_idxs:
            this_phi = load_vector(dump_file, mesh, str(pt))
            phi_mat[pt, :] = extract_pots(this_phi, np.array(pos_list))
        dump_file.close()
        print('Finished processing proc number: ', proc_idx)
    if save:
        phi_mat_fname = sbspt + conductivity + '_phi_mat.npy'
        np.save(os.path.join(path, phi_mat_fname), phi_mat)
    return
Exemple #5
0
def compute_conductivity(conductivity, save=False):
    print('Computing sigma tensor for case :', conductivity)
    mesh = meshes.load_just_mesh()
    cells_all = d.cells(mesh)
    idx_out, idx_grnd, idx_csf, np_fa = params.load_barycenters_ids()
    points_to_sample = params.load_barycenters()
    idx_all = np.arange(len(points_to_sample))
    if conductivity == 'anisotropic':
        np_v1, np_v2, np_v3 = params.load_eigen_vectors()
        longi_sigma = []
        trans_sigma = []
        for jj in idx_all:
            longi_sigma.append(scale_gm_wm(np_fa[jj], sig_brain, sig_wm_long))
            trans_sigma.append(scale_gm_wm(np_fa[jj], sig_brain, sig_wm_trans))
        print 'Did the scaling, now assigning vals'
        c00, c01, c02, c11, c12, c22 = tensor_components(mesh)
        for jj in idx_all:
            cell = cells_all.next()
            if jj in idx_grnd:  # Electrode
                c00[cell] = sig_ele
                c11[cell] = sig_ele
                c22[cell] = sig_ele
                c01[cell] = sig_zero
                c02[cell] = sig_zero
                c12[cell] = sig_zero
            elif jj in idx_out:  # Pt outside brain volume
                c00[cell] = sig_air
                c01[cell] = sig_zero
                c02[cell] = sig_zero
                c11[cell] = sig_air
                c12[cell] = sig_zero
                c22[cell] = sig_air
            elif jj in idx_csf:
                c00[cell] = sig_csf
                c01[cell] = sig_zero
                c02[cell] = sig_zero
                c11[cell] = sig_csf
                c12[cell] = sig_zero
                c22[cell] = sig_csf
            else:
                sig_wm_matrix = np.zeros((3, 3))
                np.fill_diagonal(
                    sig_wm_matrix,
                    (longi_sigma[jj], trans_sigma[jj], trans_sigma[jj]))
                S = np.matrix((np_v1[jj], np_v2[jj], np_v3[jj]))
                # This is correct. S is eigen vectors are row vectors
                sigma_mat = np.around(S.T * sig_wm_matrix * S, decimals=4)
                c00[cell] = sigma_mat[0, 0]
                c11[cell] = sigma_mat[1, 1]
                c22[cell] = sigma_mat[2, 2]
                c01[cell] = sigma_mat[0, 1]
                c02[cell] = sigma_mat[0, 2]
                c12[cell] = sigma_mat[1, 2]

        if save:
            c00_file = d.File(
                os.path.join(params.anis_path, "sigma_anis_d0.xml.gz"))
            c01_file = d.File(
                os.path.join(params.anis_path, "sigma_anis_d1.xml.gz"))
            c02_file = d.File(
                os.path.join(params.anis_path, "sigma_anis_d2.xml.gz"))
            c11_file = d.File(
                os.path.join(params.anis_path, "sigma_anis_d3.xml.gz"))
            c12_file = d.File(
                os.path.join(params.anis_path, "sigma_anis_d4.xml.gz"))
            c22_file = d.File(
                os.path.join(params.anis_path, "sigma_anis_d5.xml.gz"))
            c00_file << c00
            c01_file << c01
            c02_file << c02
            c11_file << c11
            c12_file << c12
            c22_file << c22

    elif conductivity == 'inhomogeneous':
        c = d.MeshFunction("double", mesh, 3)
        fa_scaled_sigma = []
        for jj in idx_all:
            fa_scaled_sigma.append(scale_gm_wm(np_fa[jj], sig_brain, sig_wm))
        print 'Did the scaling, now assigning vals'
        for jj in idx_all:
            cell = cells_all.next()
            if jj in idx_grnd:
                c[cell] = sig_ele
            elif jj in idx_out:
                c[cell] = sig_air
            elif jj in idx_csf:
                c[cell] = sig_csf
            else:
                c[cell] = fa_scaled_sigma[jj]
        if save:
            c00_file = d.File(
                os.path.join(params.inhom_path, "sigma_inhom.xml.gz"))
            c00_file << c

    elif conductivity == 'homogeneous':
        c = d.MeshFunction("double", mesh, 3)
        for jj in idx_all:
            cell = cells_all.next()
            if jj in idx_grnd:
                c[cell] = sig_ele
            elif jj in idx_out:
                c[cell] = sig_air
            elif jj in idx_csf:
                c[cell] = sig_csf
            else:
                c[cell] = sig_brain
        if save:
            c00_file = d.File(os.path.join(params.hom_path,
                                           "sigma_hom.xml.gz"))
            c00_file << c