Exemple #1
0
def main(config):
    baseline = LinearFeatureBaseline()
    env = normalize(HopperRandParamsEnv())
    obs_dim = np.prod(env.observation_space.shape)
    policy = GaussianMLPPolicy(
        name="meta-policy",
        obs_dim=obs_dim,
        action_dim=np.prod(env.action_space.shape),
        meta_batch_size=config['meta_batch_size'],
        hidden_sizes=config['hidden_sizes'],
    )

    sampler = MAMLSampler(
        env=env,
        policy=policy,
        rollouts_per_meta_task=config[
            'rollouts_per_meta_task'],  # This batch_size is confusing
        meta_batch_size=config['meta_batch_size'],
        max_path_length=config['max_path_length'],
        parallel=config['parallel'],
        envs_per_task=5,
    )

    sample_processor = SingleSampleProcessor(
        baseline=baseline,
        discount=config['discount'],
        gae_lambda=config['gae_lambda'],
        normalize_adv=config['normalize_adv'],
        positive_adv=config['positive_adv'],
    )

    algo = PPO(policy=policy,
               learning_rate=config['learning_rate'],
               max_epochs=config['max_epochs'])

    trainer = Trainer(
        algo=algo,
        policy=policy,
        env=env,
        sampler=sampler,
        sample_processor=sample_processor,
        n_itr=config['n_itr'],
    )
    trainer.train()
Exemple #2
0
    def construct_from_feed_dict(self, policy_pickle, env_pickle,
                                 baseline_pickle, dynamics_model_pickle,
                                 feed_dict):

        from meta_mb.samplers.metrpo_samplers.metrpo_sampler import METRPOSampler
        from meta_mb.samplers.bptt_samplers.bptt_sampler import BPTTSampler
        from meta_mb.samplers.base import SampleProcessor
        from meta_mb.algos.ppo import PPO
        from meta_mb.algos.trpo import TRPO

        env = pickle.loads(env_pickle)
        policy = pickle.loads(policy_pickle)
        baseline = pickle.loads(baseline_pickle)
        dynamics_model = pickle.loads(dynamics_model_pickle)

        self.policy = policy
        self.baseline = baseline
        if self.sampler_str == 'metrpo':
            self.model_sampler = METRPOSampler(env=env,
                                               policy=policy,
                                               dynamics_model=dynamics_model,
                                               **feed_dict['model_sampler'])
        elif self.sampler_str == 'bptt':
            self.model_sampler = BPTTSampler(env=env,
                                             policy=policy,
                                             dynamics_model=dynamics_model,
                                             **feed_dict['model_sampler'])
        else:
            raise NotImplementedError
        self.model_sample_processor = SampleProcessor(
            baseline=baseline, **feed_dict['model_sample_processor'])
        if self.algo == 'meppo':
            self.algo = PPO(policy=policy, **feed_dict['algo'])
        elif self.algo == 'metrpo':
            self.algo = TRPO(policy=policy, **feed_dict['algo'])
        else:
            raise NotImplementedError('algo_str must be meppo or metrpo')
Exemple #3
0
def run_experiment(**kwargs):
    exp_dir = os.getcwd() + '/data/parallel_mb_ppo/' + EXP_NAME + '/' + kwargs.get('exp_name', '')
    logger.configure(dir=exp_dir, format_strs=['stdout', 'log', 'csv'], snapshot_mode='last')
    json.dump(kwargs, open(exp_dir + '/params.json', 'w'), indent=2, sort_keys=True, cls=ClassEncoder)
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    config.gpu_options.per_process_gpu_memory_fraction = kwargs.get('gpu_frac', 0.95)
    sess = tf.Session(config=config)
    with sess.as_default() as sess:
        # Instantiate classes
        set_seed(kwargs['seed'])

        baseline = kwargs['baseline']()

        env = normalize(kwargs['env']()) # Wrappers?

        policy = GaussianMLPPolicy(
            name="meta-policy",
            obs_dim=np.prod(env.observation_space.shape),
            action_dim=np.prod(env.action_space.shape),
            hidden_sizes=kwargs['policy_hidden_sizes'],
            learn_std=kwargs['policy_learn_std'],
            hidden_nonlinearity=kwargs['policy_hidden_nonlinearity'],
            output_nonlinearity=kwargs['policy_output_nonlinearity'],
        )

        dynamics_model = MLPDynamicsEnsemble('dynamics-ensemble',
                                             env=env,
                                             num_models=kwargs['num_models'],
                                             hidden_nonlinearity=kwargs['dyanmics_hidden_nonlinearity'],
                                             hidden_sizes=kwargs['dynamics_hidden_sizes'],
                                             output_nonlinearity=kwargs['dyanmics_output_nonlinearity'],
                                             learning_rate=kwargs['dynamics_learning_rate'],
                                             batch_size=kwargs['dynamics_batch_size'],
                                             buffer_size=kwargs['dynamics_buffer_size'],
                                             )

        env_sampler = Sampler(
            env=env,
            policy=policy,
            num_rollouts=kwargs['num_rollouts'],
            max_path_length=kwargs['max_path_length'],
            n_parallel=kwargs['n_parallel'],
        )

        model_sampler = METRPOSampler(
            env=env,
            policy=policy,
            num_rollouts=kwargs['imagined_num_rollouts'],
            max_path_length=kwargs['max_path_length'],
            dynamics_model=dynamics_model,
            deterministic=kwargs['deterministic'],
        )

        dynamics_sample_processor = ModelSampleProcessor(
            baseline=baseline,
            discount=kwargs['discount'],
            gae_lambda=kwargs['gae_lambda'],
            normalize_adv=kwargs['normalize_adv'],
            positive_adv=kwargs['positive_adv'],
        )

        model_sample_processor = SampleProcessor(
            baseline=baseline,
            discount=kwargs['discount'],
            gae_lambda=kwargs['gae_lambda'],
            normalize_adv=kwargs['normalize_adv'],
            positive_adv=kwargs['positive_adv'],
        )

        algo = PPO(
            policy=policy,
            learning_rate=kwargs['learning_rate'],
            clip_eps=kwargs['clip_eps'],
            max_epochs=kwargs['num_ppo_steps'],
        )

        trainer = Trainer(
            algo=algo,
            policy=policy,
            env=env,
            model_sampler=model_sampler,
            env_sampler=env_sampler,
            model_sample_processor=model_sample_processor,
            dynamics_sample_processor=dynamics_sample_processor,
            dynamics_model=dynamics_model,
            n_itr=kwargs['n_itr'],
            dynamics_model_max_epochs=kwargs['dynamics_max_epochs'],
            log_real_performance=kwargs['log_real_performance'],
            steps_per_iter=kwargs['steps_per_iter'],
            sample_from_buffer=True,
            sess=sess,
        )

        trainer.train()
Exemple #4
0
def run_experiment(**config):
    exp_dir = os.getcwd() + '/data/' + EXP_NAME
    logger.configure(dir=exp_dir, format_strs=['stdout', 'log', 'csv'], snapshot_mode='last_gap', snapshot_gap=50)
    json.dump(config, open(exp_dir + '/params.json', 'w'), indent=2, sort_keys=True, cls=ClassEncoder)
    set_seed(config['seed'])
    config_sess = tf.ConfigProto()
    config_sess.gpu_options.allow_growth = True
    config_sess.gpu_options.per_process_gpu_memory_fraction = config.get('gpu_frac', 0.95)
    sess = tf.Session(config=config_sess)
    with sess.as_default() as sess:

        baseline = config['baseline']()
        #timeskip = config['timeskip']
        # log_rand = config['log_rand']
        # env = rl2env(normalize(config['env'](log_rand=log_rand)))#timeskip=timeskip)))
        env = rl2env(normalize(HalfCheetahRandVelEnv()))
        obs_dim = np.prod(env.observation_space.shape) + np.prod(env.action_space.shape) + 1 + 1 # obs + act + rew + done
        policy = GaussianRNNPolicy(
                name="meta-policy",
                obs_dim=obs_dim,
                action_dim=np.prod(env.action_space.shape),
                meta_batch_size=config['meta_batch_size'],
                hidden_sizes=config['hidden_sizes'],
                cell_type=config['cell_type']
            )

        sampler = MetaSampler(
            env=env,
            policy=policy,
            rollouts_per_meta_task=config['rollouts_per_meta_task'],
            meta_batch_size=config['meta_batch_size'],
            max_path_length=config['max_path_length'],
            parallel=config['parallel'],
            envs_per_task=1,
        )

        sample_processor = RL2SampleProcessor(
            baseline=baseline,
            discount=config['discount'],
            gae_lambda=config['gae_lambda'],
            normalize_adv=config['normalize_adv'],
            positive_adv=config['positive_adv'],
        )

        algo = PPO(
            policy=policy,
            learning_rate=config['learning_rate'],
            max_epochs=config['max_epochs'],
            backprop_steps=config['backprop_steps'],
        )

        trainer = Trainer(
            algo=algo,
            policy=policy,
            env=env,
            sampler=sampler,
            sample_processor=sample_processor,
            n_itr=config['n_itr'],
            sess=sess,
        )
        trainer.train()
Exemple #5
0
def run_experiment(**kwargs):
    exp_dir = os.getcwd(
    ) + '/data/parallel_mb_ppo/' + EXP_NAME + '/' + kwargs.get('exp_name', '')
    logger.configure(dir=exp_dir,
                     format_strs=['stdout', 'log', 'csv'],
                     snapshot_mode='last')
    json.dump(kwargs,
              open(exp_dir + '/params.json', 'w'),
              indent=2,
              sort_keys=True,
              cls=ClassEncoder)
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    config.gpu_options.per_process_gpu_memory_fraction = kwargs.get(
        'gpu_frac', 0.95)
    sess = tf.Session(config=config)
    with sess.as_default() as sess:

        # Instantiate classes
        set_seed(kwargs['seed'])

        baseline = kwargs['baseline']()

        env = normalize(kwargs['env']())

        policy = GaussianMLPPolicy(
            name="policy",
            obs_dim=np.prod(env.observation_space.shape),
            action_dim=np.prod(env.action_space.shape),
            hidden_sizes=kwargs['hidden_sizes'],
            learn_std=kwargs['learn_std'],
            hidden_nonlinearity=kwargs['hidden_nonlinearity'],
            output_nonlinearity=kwargs['output_nonlinearity'],
            init_std=kwargs['init_std'],
        )

        # Load policy here

        sampler = Sampler(
            env=env,
            policy=policy,
            num_rollouts=kwargs['num_rollouts'],
            max_path_length=kwargs['max_path_length'],
            n_parallel=kwargs['n_parallel'],
        )

        sample_processor = SingleSampleProcessor(
            baseline=baseline,
            discount=kwargs['discount'],
            gae_lambda=kwargs['gae_lambda'],
            normalize_adv=kwargs['normalize_adv'],
            positive_adv=kwargs['positive_adv'],
        )

        algo = PPO(
            policy=policy,
            learning_rate=kwargs['learning_rate'],
            clip_eps=kwargs['clip_eps'],
            max_epochs=kwargs['num_ppo_steps'],
        )

        trainer = Trainer(
            algo=algo,
            policy=policy,
            env=env,
            sampler=sampler,
            sample_processor=sample_processor,
            n_itr=kwargs['n_itr'],
            sess=sess,
        )

        trainer.train()