def __init__(self, device=None, learning_rate=1e-3, act=F.relu, n_cls=10): super(Experiment003, self).__init__(device=device, learning_rate=learning_rate, act=act, n_cls=n_cls) # Loss self.recon_loss = ReconstructionLoss() self.er_loss = EntropyRegularizationLoss()
def __init__(self, device=None, learning_rate=1e-3, act=F.leaky_relu): # Settings self.device = device self.act = act self.learning_rate = learning_rate # Loss self.recon_loss = ReconstructionLoss() # Model from meta_st.cifar10.ref_cnn_model_000 import Model self.model = Model(device, act) self.model.to_gpu(device) if device is not None else None # Optimizer self.optimizer = optimizers.Adam(learning_rate) self.optimizer.setup(self.model) self.optimizer.use_cleargrads()
def __init__(self, device=None, learning_rate=1e-3, act=F.relu, T=3): # Settings self.device = device self.act = act self.learning_rate = learning_rate self.T = T self.t = 0 # Loss self.recon_loss = ReconstructionLoss() # Model from meta_st.cifar10.cnn_model_001 import Model self.model = Model(device, act) self.model.to_gpu(device) if device is not None else None self.model_params = OrderedDict([x for x in self.model.namedparams()]) # Optimizer self.setup_meta_learners()
def __init__(self, device=None, learning_rate=1e-3, act=F.relu, T=3): # Settings self.device = device self.act = act self.learning_rate = learning_rate # Loss self.recon_loss = ReconstructionLoss() # Model from meta_st.cifar10.cnn_model_001_small import Model self.model = Model(device, act) self.model.to_gpu(device) if device is not None else None self.model_params = OrderedDict([x for x in self.model.namedparams()]) # Optimizer for model self.optimizer = Adam() self.optimizer.setup(self.model) self.optimizer.use_cleargrads() # Optimizer, or Meta-Learner (ML) self.setup_meta_learners()
def __init__(self, device=None, learning_rate=1e-3, act=F.leaky_relu, T=3): # Settings self.device = device self.act = act self.learning_rate = learning_rate self.T = 3 self.t = 0 self.loss_ml = 0 # Loss self.rc_loss = ReconstructionLoss() # Model from meta_st.cifar10.cnn_model_001 import Model self.model = Model(device, act) self.model.to_gpu(device) if device is not None else None self.model_params = OrderedDict([x for x in self.model.namedparams()]) # Optimizer self.optimizer = Adam(learning_rate) #TODO: adam is appropriate? self.optimizer.setup(self.model) self.optimizer.use_cleargrads() self.setup_meta_learners()