Exemple #1
0
    def generate_scheme(self):
        vx = self.implementation.add_input_variable("x",
                                                    self.get_input_precision())

        sollya_precision = self.get_input_precision().get_sollya_object()

        log_f = sollya.log(sollya.x)  # /sollya.log(self.basis)

        # local overloading of RaiseReturn operation
        def ExpRaiseReturn(*args, **kwords):
            kwords["arg_value"] = vx
            kwords["function_name"] = self.function_name
            return RaiseReturn(*args, **kwords)

        test_nan_or_inf = Test(vx,
                               specifier=Test.IsInfOrNaN,
                               likely=False,
                               debug=True,
                               tag="nan_or_inf")
        test_nan = Test(vx,
                        specifier=Test.IsNaN,
                        debug=True,
                        tag="is_nan_test")
        test_positive = Comparison(vx,
                                   0,
                                   specifier=Comparison.GreaterOrEqual,
                                   debug=True,
                                   tag="inf_sign")

        test_signaling_nan = Test(vx,
                                  specifier=Test.IsSignalingNaN,
                                  debug=True,
                                  tag="is_signaling_nan")
        return_snan = Statement(
            ExpRaiseReturn(ML_FPE_Invalid,
                           return_value=FP_QNaN(self.precision)))

        log2_hi_value = round(
            log_f(2),
            self.precision.get_field_size() -
            (self.precision.get_exponent_size() + 1), RN)
        log2_lo_value = round(
            log_f(2) - log2_hi_value, self.precision.sollya_object, RN)

        log2_hi = Constant(log2_hi_value, precision=self.precision)
        log2_lo = Constant(log2_lo_value, precision=self.precision)

        int_precision = self.precision.get_integer_format()

        vx_exp = ExponentExtraction(vx, tag="vx_exp", debug=debug_multi)

        #---------------------
        # Approximation scheme
        #---------------------
        # log10(x) = log10(m.2^e) = log10(m.2^(e-t+t))
        #           = log10(m.2^-t) + (e+t) log10(2)
        #  t = (m > sqrt(2)) ? 1 : 0  is used to avoid catastrophic cancellation
        #  when e = -1 and m ~ 2
        #
        #
        # log10(m.2^-t) = log10(m.r/r.2^-t) = log10(m.r) + log10(2^-t/r)
        #               = log10(m.r) - log10(r.2^t)
        #     where r = rcp(m) an approximation of 1/m such that r.m ~ 1

        # retrieving processor inverse approximation table
        dummy_var = Variable("dummy", precision=self.precision)
        dummy_div_seed = ReciprocalSeed(dummy_var, precision=self.precision)
        inv_approx_table = self.processor.get_recursive_implementation(
            dummy_div_seed,
            language=None,
            table_getter=lambda self: self.approx_table_map)

        # table creation
        table_index_size = inv_approx_table.index_size
        table_index_range = range(1, 2**table_index_size)
        log_table = ML_NewTable(dimensions=[2**table_index_size, 2],
                                storage_precision=self.precision)
        log_table_tho = ML_NewTable(dimensions=[2**table_index_size, 2],
                                    storage_precision=self.precision)
        log_table[0][0] = 0.0
        log_table[0][1] = 0.0
        log_table_tho[0][0] = 0.0
        log_table_tho[0][1] = 0.0
        hi_size = self.precision.get_field_size() - (
            self.precision.get_exponent_size() + 1)
        for i in table_index_range:
            #inv_value = (1.0 + (self.processor.inv_approx_table[i] / S2**9) + S2**-52) * S2**-1
            #inv_value = (1.0 + (inv_approx_table[i][0] / S2**9) ) * S2**-1
            inv_value = inv_approx_table[i]
            value_high = round(log_f(inv_value), hi_size, sollya.RN)
            value_low = round(
                log_f(inv_value) - value_high, sollya_precision, sollya.RN)
            log_table[i][0] = value_high
            log_table[i][1] = value_low

            inv_value_tho = S2 * inv_approx_table[i]
            value_high_tho = round(log_f(inv_value_tho), hi_size, sollya.RN)
            value_low_tho = round(
                log_f(inv_value_tho) - value_high_tho, sollya_precision,
                sollya.RN)
            log_table_tho[i][0] = value_high_tho
            log_table_tho[i][1] = value_low_tho

        # determining log_table range
        high_index_function = lambda table, i: table[i][0]
        low_index_function = lambda table, i: table[i][1]
        table_high_interval = log_table.get_subset_interval(
            high_index_function, table_index_range)
        table_low_interval = log_table.get_subset_interval(
            low_index_function, table_index_range)

        def compute_log(_vx, exp_corr_factor=None):
            _vx_mant = MantissaExtraction(_vx,
                                          tag="_vx_mant",
                                          precision=self.precision,
                                          debug=debug_multi)
            _vx_exp = ExponentExtraction(_vx, tag="_vx_exp", debug=debug_multi)

            table_index = inv_approx_table.index_function(_vx_mant)

            table_index.set_attributes(tag="table_index", debug=debug_multi)

            tho_cond = _vx_mant > Constant(sollya.sqrt(2),
                                           precision=self.precision)
            tho = Select(tho_cond,
                         Constant(1.0, precision=self.precision),
                         Constant(0.0, precision=self.precision),
                         precision=self.precision,
                         tag="tho",
                         debug=debug_multi)

            rcp = ReciprocalSeed(_vx_mant, precision=self.precision, tag="rcp")
            r = Multiplication(rcp,
                               _vx_mant,
                               precision=self.precision,
                               tag="r")

            int_format = self.precision.get_integer_format()

            # argument reduction
            # TODO: detect if single operand inverse seed is supported by the targeted architecture
            pre_arg_red_index = TypeCast(BitLogicAnd(
                TypeCast(ReciprocalSeed(_vx_mant,
                                        precision=self.precision,
                                        tag="seed",
                                        debug=debug_multi,
                                        silent=True),
                         precision=int_format),
                Constant(-2, precision=int_format),
                precision=int_format),
                                         precision=self.precision,
                                         tag="pre_arg_red_index",
                                         debug=debug_multi)

            arg_red_index = Select(Equal(table_index, 0),
                                   1.0,
                                   pre_arg_red_index,
                                   tag="arg_red_index",
                                   debug=debug_multi)
            _red_vx = arg_red_index * _vx_mant - 1.0
            inv_err = S2**-6
            red_interval = Interval(1 - inv_err, 1 + inv_err)
            _red_vx.set_attributes(tag="_red_vx",
                                   debug=debug_multi,
                                   interval=red_interval)

            # return in case of standard (non-special) input
            _log_inv_lo = Select(tho_cond,
                                 TableLoad(log_table_tho, table_index, 1),
                                 TableLoad(log_table, table_index, 1),
                                 tag="log_inv_lo",
                                 debug=debug_multi)

            _log_inv_hi = Select(tho_cond,
                                 TableLoad(log_table_tho, table_index, 0),
                                 TableLoad(log_table, table_index, 0),
                                 tag="log_inv_hi",
                                 debug=debug_multi)

            Log.report(Log.Info, "building mathematical polynomial")
            approx_interval = Interval(-inv_err, inv_err)
            poly_degree = sup(
                guessdegree(
                    log(1 + sollya.x) / sollya.x, approx_interval, S2**
                    -(self.precision.get_field_size() + 1))) + 1
            global_poly_object = Polynomial.build_from_approximation(
                log(1 + x) / x, poly_degree,
                [self.precision] * (poly_degree + 1), approx_interval,
                sollya.absolute)
            poly_object = global_poly_object.sub_poly(start_index=1)

            Log.report(Log.Info, "generating polynomial evaluation scheme")
            _poly = PolynomialSchemeEvaluator.generate_horner_scheme(
                poly_object, _red_vx, unified_precision=self.precision)
            _poly.set_attributes(tag="poly", debug=debug_multi)
            Log.report(Log.Info, poly_object.get_sollya_object())

            corr_exp = Conversion(_vx_exp if exp_corr_factor == None else
                                  _vx_exp + exp_corr_factor,
                                  precision=self.precision) + tho
            corr_exp.set_attributes(tag="corr_exp", debug=debug_multi)

            # _poly approximates log10(1+r)/r
            # _poly * red_vx approximates log10(x)

            m0h, m0l = Mul211(_red_vx, _poly)
            m0h, m0l = Add212(_red_vx, m0h, m0l)
            m0h.set_attributes(tag="m0h", debug=debug_multi)
            m0l.set_attributes(tag="m0l")
            l0_h = corr_exp * log2_hi
            l0_l = corr_exp * log2_lo
            l0_h.set_attributes(tag="l0_h")
            l0_l.set_attributes(tag="l0_l")
            rh, rl = Add222(l0_h, l0_l, m0h, m0l)
            rh.set_attributes(tag="rh0", debug=debug_multi)
            rl.set_attributes(tag="rl0", debug=debug_multi)
            rh, rl = Add222(-_log_inv_hi, -_log_inv_lo, rh, rl)
            rh.set_attributes(tag="rh", debug=debug_multi)
            rl.set_attributes(tag="rl", debug=debug_multi)

            if sollya.log(self.basis) != 1.0:
                lbh = self.precision.round_sollya_object(
                    1 / sollya.log(self.basis))
                lbl = self.precision.round_sollya_object(
                    1 / sollya.log(self.basis) - lbh)
                rh, rl = Mul222(rh, rl, lbh, lbl)
                return rh
            else:
                return rh

        result = compute_log(vx)
        result.set_attributes(tag="result", debug=debug_multi)

        if False:
            # building eval error map
            eval_error_map = {
                red_vx:
                Variable("red_vx",
                         precision=self.precision,
                         interval=red_vx.get_interval()),
                log_inv_hi:
                Variable("log_inv_hi",
                         precision=self.precision,
                         interval=table_high_interval),
                log_inv_lo:
                Variable("log_inv_lo",
                         precision=self.precision,
                         interval=table_low_interval),
                corr_exp:
                Variable("corr_exp_g",
                         precision=self.precision,
                         interval=self.precision.get_exponent_interval()),
            }
            # computing gappa error
            if is_gappa_installed():
                poly_eval_error = self.get_eval_error(result, eval_error_map)
                Log.report(Log.Info, "poly_eval_error: ", poly_eval_error)

        neg_input = Comparison(vx,
                               0,
                               likely=False,
                               specifier=Comparison.Less,
                               debug=debug_multi,
                               tag="neg_input")
        vx_nan_or_inf = Test(vx,
                             specifier=Test.IsInfOrNaN,
                             likely=False,
                             debug=debug_multi,
                             tag="nan_or_inf")
        vx_snan = Test(vx,
                       specifier=Test.IsSignalingNaN,
                       likely=False,
                       debug=debug_multi,
                       tag="snan")
        vx_inf = Test(vx,
                      specifier=Test.IsInfty,
                      likely=False,
                      debug=debug_multi,
                      tag="inf")
        vx_subnormal = Test(vx,
                            specifier=Test.IsSubnormal,
                            likely=False,
                            debug=debug_multi,
                            tag="vx_subnormal")
        vx_zero = Test(vx,
                       specifier=Test.IsZero,
                       likely=False,
                       debug=debug_multi,
                       tag="vx_zero")

        exp_mone = Equal(vx_exp,
                         -1,
                         tag="exp_minus_one",
                         debug=debug_multi,
                         likely=False)

        # exp=-1 case
        Log.report(Log.Info, "managing exp=-1 case")
        #red_vx_2 = arg_red_index * vx_mant * 0.5
        #approx_interval2 = Interval(0.5 - inv_err, 0.5 + inv_err)
        #poly_degree2 = sup(guessdegree(log(x), approx_interval2, S2**-(self.precision.get_field_size()+1))) + 1
        #poly_object2 = Polynomial.build_from_approximation(log(sollya.x), poly_degree, [self.precision]*(poly_degree+1), approx_interval2, sollya.absolute)
        #print "poly_object2: ", poly_object2.get_sollya_object()
        #poly2 = PolynomialSchemeEvaluator.generate_horner_scheme(poly_object2, red_vx_2, unified_precision = self.precision)
        #poly2.set_attributes(tag = "poly2", debug = debug_multi)
        #result2 = (poly2 - log_inv_hi - log_inv_lo)

        m100 = -100
        S2100 = Constant(S2**100, precision=self.precision)
        result_subnormal = compute_log(vx * S2100, exp_corr_factor=m100)

        # main scheme
        Log.report(Log.Info, "MDL scheme")
        pre_scheme = ConditionBlock(
            neg_input,
            Statement(ClearException(), Raise(ML_FPE_Invalid),
                      Return(FP_QNaN(self.precision))),
            ConditionBlock(
                vx_nan_or_inf,
                ConditionBlock(
                    vx_inf,
                    Statement(
                        ClearException(),
                        Return(FP_PlusInfty(self.precision)),
                    ),
                    Statement(ClearException(),
                              ConditionBlock(vx_snan, Raise(ML_FPE_Invalid)),
                              Return(FP_QNaN(self.precision)))),
                ConditionBlock(
                    vx_subnormal,
                    ConditionBlock(
                        vx_zero,
                        Statement(
                            ClearException(),
                            Raise(ML_FPE_DivideByZero),
                            Return(FP_MinusInfty(self.precision)),
                        ), Return(result_subnormal)), Return(result))))
        scheme = pre_scheme
        return scheme
Exemple #2
0
    def generate_scheme(self):
        #func_implementation = CodeFunction(self.function_name, output_format = self.precision)
        vx = self.implementation.add_input_variable("x",
                                                    self.get_input_precision())

        sollya_precision = self.get_input_precision().get_sollya_object()

        # local overloading of RaiseReturn operation
        def ExpRaiseReturn(*args, **kwords):
            kwords["arg_value"] = vx
            kwords["function_name"] = self.function_name
            return RaiseReturn(*args, **kwords)

        test_nan_or_inf = Test(vx,
                               specifier=Test.IsInfOrNaN,
                               likely=False,
                               debug=True,
                               tag="nan_or_inf")
        test_nan = Test(vx,
                        specifier=Test.IsNaN,
                        debug=True,
                        tag="is_nan_test")
        test_positive = Comparison(vx,
                                   0,
                                   specifier=Comparison.GreaterOrEqual,
                                   debug=True,
                                   tag="inf_sign")

        test_signaling_nan = Test(vx,
                                  specifier=Test.IsSignalingNaN,
                                  debug=True,
                                  tag="is_signaling_nan")
        return_snan = Statement(
            ExpRaiseReturn(ML_FPE_Invalid,
                           return_value=FP_QNaN(self.precision)))

        log2_hi_value = round(
            log10(2),
            self.precision.get_field_size() -
            (self.precision.get_exponent_size() + 1), RN)
        log2_lo_value = round(
            log10(2) - log2_hi_value, self.precision.sollya_object, RN)

        log2_hi = Constant(log2_hi_value, precision=self.precision)
        log2_lo = Constant(log2_lo_value, precision=self.precision)

        vx_exp = ExponentExtraction(vx, tag="vx_exp", debug=debugd)

        int_precision = self.precision.get_integer_format()

        # retrieving processor inverse approximation table
        dummy_var = Variable("dummy", precision=self.precision)
        dummy_div_seed = DivisionSeed(dummy_var, precision=self.precision)
        inv_approx_table = self.processor.get_recursive_implementation(
            dummy_div_seed,
            language=None,
            table_getter=lambda self: self.approx_table_map)

        # table creation
        table_index_size = 7
        table_index_range = range(1, 2**table_index_size)
        log_table = ML_NewTable(dimensions=[2**table_index_size, 2],
                                storage_precision=self.precision)
        log_table[0][0] = 0.0
        log_table[0][1] = 0.0
        for i in table_index_range:
            #inv_value = (1.0 + (self.processor.inv_approx_table[i] / S2**9) + S2**-52) * S2**-1
            #inv_value = (1.0 + (inv_approx_table[i][0] / S2**9) ) * S2**-1
            inv_value = inv_approx_table[i][0]
            value_high = round(
                log10(inv_value),
                self.precision.get_field_size() -
                (self.precision.get_exponent_size() + 1), sollya.RN)
            value_low = round(
                log10(inv_value) - value_high, sollya_precision, sollya.RN)
            log_table[i][0] = value_high
            log_table[i][1] = value_low

        # determining log_table range
        high_index_function = lambda table, i: table[i][0]
        low_index_function = lambda table, i: table[i][1]
        table_high_interval = log_table.get_subset_interval(
            high_index_function, table_index_range)
        table_low_interval = log_table.get_subset_interval(
            low_index_function, table_index_range)

        def compute_log(_vx, exp_corr_factor=None):
            _vx_mant = MantissaExtraction(_vx,
                                          tag="_vx_mant",
                                          debug=debug_lftolx)
            _vx_exp = ExponentExtraction(_vx, tag="_vx_exp", debug=debugd)

            table_index = BitLogicAnd(BitLogicRightShift(
                TypeCast(_vx_mant, precision=int_precision, debug=debuglx),
                self.precision.get_field_size() - 7,
                debug=debuglx),
                                      0x7f,
                                      tag="table_index",
                                      debug=debuglld)

            # argument reduction
            # TODO: detect if single operand inverse seed is supported by the targeted architecture
            pre_arg_red_index = TypeCast(BitLogicAnd(
                TypeCast(DivisionSeed(_vx_mant,
                                      precision=self.precision,
                                      tag="seed",
                                      debug=debug_lftolx,
                                      silent=True),
                         precision=ML_UInt64),
                Constant(-2, precision=ML_UInt64),
                precision=ML_UInt64),
                                         precision=self.precision,
                                         tag="pre_arg_red_index",
                                         debug=debug_lftolx)
            arg_red_index = Select(Equal(table_index, 0),
                                   1.0,
                                   pre_arg_red_index,
                                   tag="arg_red_index",
                                   debug=debug_lftolx)
            #if not processor.is_supported_operation(arg_red_index):
            #    if self.precision != ML_Binary32:
            #        arg_red_index = DivisionSeed(Conversion(_vx_mant, precision = ML_Binary32), precision = ML_Binary32,
            _red_vx = arg_red_index * _vx_mant - 1.0
            inv_err = S2**-7
            red_interval = Interval(1 - inv_err, 1 + inv_err)
            _red_vx.set_attributes(tag="_red_vx",
                                   debug=debug_lftolx,
                                   interval=red_interval)

            # return in case of standard (non-special) input
            _log_inv_lo = TableLoad(log_table,
                                    table_index,
                                    1,
                                    tag="log_inv_lo",
                                    debug=debug_lftolx)
            _log_inv_hi = TableLoad(log_table,
                                    table_index,
                                    0,
                                    tag="log_inv_hi",
                                    debug=debug_lftolx)

            print("building mathematical polynomial")
            approx_interval = Interval(-inv_err, inv_err)
            poly_degree = sup(
                guessdegree(
                    log10(1 + sollya.x) / sollya.x, approx_interval, S2**
                    -(self.precision.get_field_size() + 1))) + 1
            global_poly_object = Polynomial.build_from_approximation(
                log10(1 + x) / x, poly_degree,
                [self.precision] * (poly_degree + 1), approx_interval,
                sollya.absolute)
            poly_object = global_poly_object  #.sub_poly(start_index = 1)

            print("generating polynomial evaluation scheme")
            _poly = PolynomialSchemeEvaluator.generate_horner_scheme(
                poly_object, _red_vx, unified_precision=self.precision)
            _poly.set_attributes(tag="poly", debug=debug_lftolx)
            print(global_poly_object.get_sollya_object())

            corr_exp = Conversion(
                _vx_exp if exp_corr_factor == None else _vx_exp +
                exp_corr_factor,
                precision=self.precision)
            split_red_vx = Split(_red_vx,
                                 precision=ML_DoubleDouble,
                                 tag="split_red_vx",
                                 debug=debug_ddtolx)
            red_vx_hi = split_red_vx.hi
            red_vx_lo = split_red_vx.lo

            # result = _red_vx * poly - log_inv_hi - log_inv_lo + _vx_exp * log2_hi + _vx_exp * log2_lo
            pre_result = -_log_inv_hi + ((_red_vx * _poly +
                                          (corr_exp * log2_lo - _log_inv_lo)))
            pre_result.set_attributes(tag="pre_result", debug=debug_lftolx)
            exact_log2_hi_exp = corr_exp * log2_hi
            exact_log2_hi_exp.set_attributes(tag="exact_log2_hi_hex",
                                             debug=debug_lftolx)
            cancel_part = (corr_exp * log2_hi - _log_inv_hi)
            cancel_part.set_attributes(tag="cancel_part", debug=debug_lftolx)
            sub_part = red_vx_hi + cancel_part
            sub_part.set_attributes(tag="sub_part", debug=debug_lftolx)
            #result_one_low_part = (red_vx_hi * _poly + (red_vx_lo + (red_vx_lo * _poly + (corr_exp * log2_lo - _log_inv_lo))))
            result_one_low_part = ((red_vx_lo +
                                    (red_vx_lo * _poly +
                                     (corr_exp * log2_lo - _log_inv_lo))))
            result_one_low_part.set_attributes(tag="result_one_low_part",
                                               debug=debug_lftolx)
            _result_one = (
                (sub_part) + red_vx_hi * _poly) + result_one_low_part
            _result = exact_log2_hi_exp + pre_result
            return _result, _poly, _log_inv_lo, _log_inv_hi, _red_vx, _result_one, corr_exp

        result, poly, log_inv_lo, log_inv_hi, red_vx, new_result_one, corr_exp = compute_log(
            vx)
        result.set_attributes(tag="result", debug=debug_lftolx)
        new_result_one.set_attributes(tag="new_result_one", debug=debug_lftolx)

        # building eval error map
        eval_error_map = {
            red_vx:
            Variable("red_vx",
                     precision=self.precision,
                     interval=red_vx.get_interval()),
            log_inv_hi:
            Variable("log_inv_hi",
                     precision=self.precision,
                     interval=table_high_interval),
            log_inv_lo:
            Variable("log_inv_lo",
                     precision=self.precision,
                     interval=table_low_interval),
            corr_exp:
            Variable("corr_exp_g",
                     precision=self.precision,
                     interval=self.precision.get_exponent_interval()),
        }
        # computing gappa error
        if is_gappa_installed():
            poly_eval_error = self.get_eval_error(result, eval_error_map)
            print("poly_eval_error: ", poly_eval_error)

        neg_input = Comparison(vx,
                               0,
                               likely=False,
                               specifier=Comparison.Less,
                               debug=debugd,
                               tag="neg_input")
        vx_nan_or_inf = Test(vx,
                             specifier=Test.IsInfOrNaN,
                             likely=False,
                             debug=debugd,
                             tag="nan_or_inf")
        vx_snan = Test(vx,
                       specifier=Test.IsSignalingNaN,
                       likely=False,
                       debug=debugd,
                       tag="snan")
        vx_inf = Test(vx,
                      specifier=Test.IsInfty,
                      likely=False,
                      debug=debugd,
                      tag="inf")
        vx_subnormal = Test(vx,
                            specifier=Test.IsSubnormal,
                            likely=False,
                            debug=debugd,
                            tag="vx_subnormal")
        vx_zero = Test(vx,
                       specifier=Test.IsZero,
                       likely=False,
                       debug=debugd,
                       tag="vx_zero")

        exp_mone = Equal(vx_exp,
                         -1,
                         tag="exp_minus_one",
                         debug=debugd,
                         likely=False)
        vx_one = Equal(vx, 1.0, tag="vx_one", likely=False, debug=debugd)

        # exp=-1 case
        print("managing exp=-1 case")
        #red_vx_2 = arg_red_index * vx_mant * 0.5
        #approx_interval2 = Interval(0.5 - inv_err, 0.5 + inv_err)
        #poly_degree2 = sup(guessdegree(log(x), approx_interval2, S2**-(self.precision.get_field_size()+1))) + 1
        #poly_object2 = Polynomial.build_from_approximation(log(sollya.x), poly_degree, [self.precision]*(poly_degree+1), approx_interval2, sollya.absolute)
        #print "poly_object2: ", poly_object2.get_sollya_object()
        #poly2 = PolynomialSchemeEvaluator.generate_horner_scheme(poly_object2, red_vx_2, unified_precision = self.precision)
        #poly2.set_attributes(tag = "poly2", debug = debug_lftolx)
        #result2 = (poly2 - log_inv_hi - log_inv_lo)

        log_subtract = -log_inv_hi - log2_hi
        log_subtract.set_attributes(tag="log_subtract", debug=debug_lftolx)
        result2 = (log_subtract) + ((poly * red_vx) - (log_inv_lo + log2_lo))
        result2.set_attributes(tag="result2", debug=debug_lftolx)

        m100 = -100
        S2100 = Constant(S2**100, precision=self.precision)
        result_subnormal, _, _, _, _, _, _ = compute_log(vx * S2100,
                                                         exp_corr_factor=m100)

        print("managing close to 1.0 cases")
        one_err = S2**-7
        approx_interval_one = Interval(-one_err, one_err)
        red_vx_one = vx - 1.0
        poly_degree_one = sup(
            guessdegree(
                log10(1 + sollya.x) / sollya.x, approx_interval_one, S2**
                -(self.precision.get_field_size() + 1))) + 1
        poly_object_one = Polynomial.build_from_approximation(
            log10(1 + sollya.x) / sollya.x, poly_degree_one,
            [self.precision] * (poly_degree_one + 1), approx_interval_one,
            sollya.absolute).sub_poly(start_index=1)
        poly_one = PolynomialSchemeEvaluator.generate_horner_scheme(
            poly_object_one, red_vx_one, unified_precision=self.precision)
        poly_one.set_attributes(tag="poly_one", debug=debug_lftolx)
        result_one = red_vx_one + red_vx_one * poly_one
        cond_one = (vx < (1 + one_err)) & (vx > (1 - one_err))
        cond_one.set_attributes(tag="cond_one", debug=debugd, likely=False)

        # main scheme
        print("MDL scheme")
        pre_scheme = ConditionBlock(
            neg_input,
            Statement(ClearException(), Raise(ML_FPE_Invalid),
                      Return(FP_QNaN(self.precision))),
            ConditionBlock(
                vx_nan_or_inf,
                ConditionBlock(
                    vx_inf,
                    Statement(
                        ClearException(),
                        Return(FP_PlusInfty(self.precision)),
                    ),
                    Statement(ClearException(),
                              ConditionBlock(vx_snan, Raise(ML_FPE_Invalid)),
                              Return(FP_QNaN(self.precision)))),
                ConditionBlock(
                    vx_subnormal,
                    ConditionBlock(
                        vx_zero,
                        Statement(
                            ClearException(),
                            Raise(ML_FPE_DivideByZero),
                            Return(FP_MinusInfty(self.precision)),
                        ), Return(result_subnormal)),
                    ConditionBlock(
                        vx_one,
                        Statement(
                            ClearException(),
                            Return(FP_PlusZero(self.precision)),
                        ),
                        ConditionBlock(exp_mone, Return(result2),
                                       Return(result))
                        #ConditionBlock(cond_one,
                        #Return(new_result_one),
                        #ConditionBlock(exp_mone,
                        #Return(result2),
                        #Return(result)
                        #)
                        #)
                    ))))
        scheme = pre_scheme
        return scheme