Exemple #1
0
def test_input_data():
    '''Tests input_data function in metamoles.py'''
    input_df = pd.read_csv('playground_df_cleaned_kegg_with_smiles.csv')
    test_df = metamoles.input_data(input_df)
    assert isinstance(test_df, pd.DataFrame) == True, """TypeError,
    function should return a pandas dataframe"""
    #assert
    return '1/1 tests successful'
def test_fingerprint_products():
    """Tests fingerprint_products function in metamoles.py"""
    input_df = pd.read_csv(data_path +
                           "/playground_df_cleaned_kegg_with_smiles.csv")
    test_df = metamoles.input_data(input_df)
    assert isinstance(metamoles.fingerprint_products(test_df),
                      pd.DataFrame) == True, """TypeError,
    function should return a pandas dataframe"""
    #assert
    return '1/1 tests successful'
Exemple #3
0
def test_sim_i_j():
    '''Tests sim_i_j function in metamoles.py'''
    input_df = pd.read_csv('playground_df_cleaned_kegg_with_smiles.csv')
    test_df = metamoles.fingerprint_products(metamoles.input_data(input_df))
    A = test_df.iloc[0]
    #B = test_df.iloc[1]
    #C = test_df.iloc[2]
    assert metamoles.sim_i_j(A, A) == 1, "Self correlation is broken"
    #assert metamoles.sim_i_j(A, B) == -1, "Standard correlation is broken"
    #assert metamoles.sim_i_j(A, C) == 0, "Standard correlation is broken"
    return '1/1 tests successful'
Exemple #4
0
def test_sim_metric():
    '''Test sim_i_all function in metamoles.py'''
    input_df = pd.read_csv('playground_df_cleaned_kegg_with_smiles.csv')
    test_df = metamoles.fingerprint_products(metamoles.input_data(input_df))
    assert isinstance(metamoles.sim_metric(test_df),
                      pd.DataFrame) == True, """TypeError,
    function should return a dataframe"""
    assert metamoles.sim_metric(
        test_df).isnull().values.any() == False, """ValueError,
    function-generated dataframe should not contain null values"""
    #assert test_df.size == metamoles.sim_metric(test_df).size, """ShapeError,
    #function-generated dataframe should be the same size as input dataframe"""
    return "2/2 Tests successful"
Exemple #5
0
def test_sim_i_all():
    '''Test sim_i_all function in metamoles.py'''
    input_df = pd.read_csv('playground_df_cleaned_kegg_with_smiles.csv')
    test_df = metamoles.fingerprint_products(metamoles.input_data(input_df))
    metric = pd.DataFrame()
    assert metric.empty == True, """ShapeError, input metric dataframe
    should be initialized as empty"""
    for index, row in test_df.iterrows():
        assert metamoles.sim_i_all(test_df, index, row,
                                   metric) == None, """OutputError, function
        shouldn't return anything"""
        assert metric[index].all() >= 0 and metric[index].all(
        ) <= 1.0, """ValueError,
        metric should be between 0 and 1"""
    return "3/3 Tests successful"