Exemple #1
0
def maml_trpo(ctxt, seed, epochs, rollouts_per_task, meta_batch_size):
    """Set up environment and algorithm and run the task.

    Args:
        ctxt (garage.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.
        epochs (int): Number of training epochs.
        rollouts_per_task (int): Number of rollouts per epoch per task
            for training.
        meta_batch_size (int): Number of tasks sampled per batch.

    """
    set_seed(seed)
    env = GarageEnv(
        normalize(ML10.get_train_tasks(), expected_action_scale=10.))

    policy = GaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=(100, 100),
        hidden_nonlinearity=torch.tanh,
        output_nonlinearity=None,
    )

    value_function = GaussianMLPValueFunction(env_spec=env.spec,
                                              hidden_sizes=(32, 32),
                                              hidden_nonlinearity=torch.tanh,
                                              output_nonlinearity=None)

    max_path_length = 100

    test_task_names = ML10.get_test_tasks().all_task_names
    test_tasks = [
        GarageEnv(normalize(ML10.from_task(task), expected_action_scale=10.))
        for task in test_task_names
    ]
    test_sampler = EnvPoolSampler(test_tasks)

    meta_evaluator = MetaEvaluator(test_task_sampler=test_sampler,
                                   max_path_length=max_path_length,
                                   n_test_tasks=len(test_task_names))

    runner = LocalRunner(ctxt)
    algo = MAMLTRPO(env=env,
                    policy=policy,
                    value_function=value_function,
                    max_path_length=max_path_length,
                    meta_batch_size=meta_batch_size,
                    discount=0.99,
                    gae_lambda=1.,
                    inner_lr=0.1,
                    num_grad_updates=1,
                    meta_evaluator=meta_evaluator)

    runner.setup(algo, env)
    runner.train(n_epochs=epochs,
                 batch_size=rollouts_per_task * max_path_length)
Exemple #2
0
    def test_rl2_ppo_ml10(self):
        # pylint: disable=import-outside-toplevel
        from metaworld.benchmarks import ML10
        ML_train_envs = [
            RL2Env(ML10.from_task(task_name))
            for task_name in ML10.get_train_tasks().all_task_names
        ]
        tasks = task_sampler.EnvPoolSampler(ML_train_envs)
        tasks.grow_pool(self.meta_batch_size)

        env_spec = ML_train_envs[0].spec
        policy = GaussianGRUPolicy(env_spec=env_spec,
                                   hidden_dim=64,
                                   state_include_action=False,
                                   name='policy')
        baseline = LinearFeatureBaseline(env_spec=env_spec)
        with LocalTFRunner(snapshot_config, sess=self.sess) as runner:
            algo = RL2PPO(rl2_max_path_length=self.max_path_length,
                          meta_batch_size=self.meta_batch_size,
                          task_sampler=tasks,
                          env_spec=env_spec,
                          policy=policy,
                          baseline=baseline,
                          discount=0.99,
                          gae_lambda=0.95,
                          lr_clip_range=0.2,
                          stop_entropy_gradient=True,
                          entropy_method='max',
                          policy_ent_coeff=0.02,
                          center_adv=False,
                          max_path_length=self.max_path_length *
                          self.episode_per_task)

            runner.setup(
                algo,
                self.tasks.sample(self.meta_batch_size),
                sampler_cls=LocalSampler,
                n_workers=self.meta_batch_size,
                worker_class=RL2Worker,
                worker_args=dict(n_paths_per_trial=self.episode_per_task))

            runner.train(n_epochs=1,
                         batch_size=self.episode_per_task *
                         self.max_path_length * self.meta_batch_size)
Exemple #3
0
def test_env_pool_sampler():
    # Import, construct environments here to avoid using up too much
    # resources if this test isn't run.
    # pylint: disable=import-outside-toplevel
    from metaworld.benchmarks import ML10
    train_tasks = ML10.get_train_tasks().all_task_names
    ML10_train_envs = [
        ML10.from_task(train_task) for train_task in train_tasks
    ]
    tasks = task_sampler.EnvPoolSampler(ML10_train_envs)
    assert tasks.n_tasks == 10
    updates = tasks.sample(10)
    for env in ML10_train_envs:
        assert any(env is update() for update in updates)
    with pytest.raises(ValueError):
        tasks.sample(10, with_replacement=True)
    with pytest.raises(ValueError):
        tasks.sample(11)
    tasks.grow_pool(20)
    tasks.sample(20)
Exemple #4
0
def rl2_ppo_ml10(ctxt, seed, max_path_length, meta_batch_size, n_epochs,
                 episode_per_task):
    """Train PPO with ML10 environment.

    Args:
        ctxt (garage.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.
        max_path_length (int): Maximum length of a single rollout.
        meta_batch_size (int): Meta batch size.
        n_epochs (int): Total number of epochs for training.
        episode_per_task (int): Number of training episode per task.

    """
    set_seed(seed)
    with LocalTFRunner(snapshot_config=ctxt) as runner:
        ML_train_envs = [
            RL2Env(ML10.from_task(task_name))
            for task_name in ML10.get_train_tasks().all_task_names
        ]
        tasks = task_sampler.EnvPoolSampler(ML_train_envs)
        tasks.grow_pool(meta_batch_size)

        env_spec = ML_train_envs[0].spec
        policy = GaussianGRUPolicy(name='policy',
                                   hidden_dim=64,
                                   env_spec=env_spec,
                                   state_include_action=False)

        baseline = LinearFeatureBaseline(env_spec=env_spec)

        algo = RL2PPO(rl2_max_path_length=max_path_length,
                      meta_batch_size=meta_batch_size,
                      task_sampler=tasks,
                      env_spec=env_spec,
                      policy=policy,
                      baseline=baseline,
                      discount=0.99,
                      gae_lambda=0.95,
                      lr_clip_range=0.2,
                      optimizer_args=dict(
                          batch_size=32,
                          max_epochs=10,
                      ),
                      stop_entropy_gradient=True,
                      entropy_method='max',
                      policy_ent_coeff=0.02,
                      center_adv=False,
                      max_path_length=max_path_length * episode_per_task)

        runner.setup(algo,
                     tasks.sample(meta_batch_size),
                     sampler_cls=LocalSampler,
                     n_workers=meta_batch_size,
                     worker_class=RL2Worker,
                     worker_args=dict(n_paths_per_trial=episode_per_task))

        runner.train(n_epochs=n_epochs,
                     batch_size=episode_per_task * max_path_length *
                     meta_batch_size)
Exemple #5
0
def torch_pearl_ml10(ctxt=None,
                     seed=1,
                     num_epochs=1000,
                     num_train_tasks=10,
                     num_test_tasks=5,
                     latent_size=7,
                     encoder_hidden_size=200,
                     net_size=300,
                     meta_batch_size=16,
                     num_steps_per_epoch=4000,
                     num_initial_steps=4000,
                     num_tasks_sample=15,
                     num_steps_prior=750,
                     num_extra_rl_steps_posterior=750,
                     batch_size=256,
                     embedding_batch_size=64,
                     embedding_mini_batch_size=64,
                     max_path_length=150,
                     reward_scale=10.,
                     use_gpu=False):
    """Train PEARL with ML10 environments.

    Args:
        ctxt (garage.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.
        num_epochs (int): Number of training epochs.
        num_train_tasks (int): Number of tasks for training.
        num_test_tasks (int): Number of tasks for testing.
        latent_size (int): Size of latent context vector.
        encoder_hidden_size (int): Output dimension of dense layer of the
            context encoder.
        net_size (int): Output dimension of a dense layer of Q-function and
            value function.
        meta_batch_size (int): Meta batch size.
        num_steps_per_epoch (int): Number of iterations per epoch.
        num_initial_steps (int): Number of transitions obtained per task before
            training.
        num_tasks_sample (int): Number of random tasks to obtain data for each
            iteration.
        num_steps_prior (int): Number of transitions to obtain per task with
            z ~ prior.
        num_extra_rl_steps_posterior (int): Number of additional transitions
            to obtain per task with z ~ posterior that are only used to train
            the policy and NOT the encoder.
        batch_size (int): Number of transitions in RL batch.
        embedding_batch_size (int): Number of transitions in context batch.
        embedding_mini_batch_size (int): Number of transitions in mini context
            batch; should be same as embedding_batch_size for non-recurrent
            encoder.
        max_path_length (int): Maximum path length.
        reward_scale (int): Reward scale.
        use_gpu (bool): Whether or not to use GPU for training.

    """
    set_seed(seed)
    encoder_hidden_sizes = (encoder_hidden_size, encoder_hidden_size,
                            encoder_hidden_size)
    # create multi-task environment and sample tasks
    ML_train_envs = [
        GarageEnv(normalize(ML10.from_task(task_name)))
        for task_name in ML10.get_train_tasks().all_task_names
    ]

    ML_test_envs = [
        GarageEnv(normalize(ML10.from_task(task_name)))
        for task_name in ML10.get_test_tasks().all_task_names
    ]

    env_sampler = EnvPoolSampler(ML_train_envs)
    env = env_sampler.sample(num_train_tasks)
    test_env_sampler = EnvPoolSampler(ML_test_envs)

    runner = LocalRunner(ctxt)

    # instantiate networks
    augmented_env = PEARL.augment_env_spec(env[0](), latent_size)
    qf = ContinuousMLPQFunction(env_spec=augmented_env,
                                hidden_sizes=[net_size, net_size, net_size])

    vf_env = PEARL.get_env_spec(env[0](), latent_size, 'vf')
    vf = ContinuousMLPQFunction(env_spec=vf_env,
                                hidden_sizes=[net_size, net_size, net_size])

    inner_policy = TanhGaussianMLPPolicy(
        env_spec=augmented_env, hidden_sizes=[net_size, net_size, net_size])

    pearl = PEARL(
        env=env,
        policy_class=ContextConditionedPolicy,
        encoder_class=MLPEncoder,
        inner_policy=inner_policy,
        qf=qf,
        vf=vf,
        num_train_tasks=num_train_tasks,
        num_test_tasks=num_test_tasks,
        latent_dim=latent_size,
        encoder_hidden_sizes=encoder_hidden_sizes,
        test_env_sampler=test_env_sampler,
        meta_batch_size=meta_batch_size,
        num_steps_per_epoch=num_steps_per_epoch,
        num_initial_steps=num_initial_steps,
        num_tasks_sample=num_tasks_sample,
        num_steps_prior=num_steps_prior,
        num_extra_rl_steps_posterior=num_extra_rl_steps_posterior,
        batch_size=batch_size,
        embedding_batch_size=embedding_batch_size,
        embedding_mini_batch_size=embedding_mini_batch_size,
        max_path_length=max_path_length,
        reward_scale=reward_scale,
    )

    tu.set_gpu_mode(use_gpu, gpu_id=0)
    if use_gpu:
        pearl.to()

    runner.setup(algo=pearl,
                 env=env[0](),
                 sampler_cls=LocalSampler,
                 sampler_args=dict(max_path_length=max_path_length),
                 n_workers=1,
                 worker_class=PEARLWorker)

    runner.train(n_epochs=num_epochs, batch_size=batch_size)