def main(): for z in range(1, 7): # Get file name file_name = join("instances", "instance{0}.txt".format(z)) print("\n{0} file : {1}".format(z, file_name)) # Read file data number_of_items, weight_constraint, items = get_data(file=file_name) # Display number of lines, weight and the volume print("\nNumber of Items:{0}, Weight constraint:{1}\n".format(number_of_items, weight_constraint)) # Initialize item class item_object = Items(items=items) # Constants initial_temperature = 10000 cooling_rate = 0.75 iteration = 5 epoch = 3 termination_criteria = 0.001 acceptance_criterion = 0.90 sa_object = SA(items=items, number_of_items=number_of_items, item_object=item_object, weight_constraint=weight_constraint, initial_temperature=initial_temperature, cooling_rate=cooling_rate, iteration=iteration, epoch=epoch, termination_criteria=termination_criteria, acceptance_criterion=acceptance_criterion) # Randomly initialed solution sa_object.first_improvement(initial_solution=sa_object.initial_solution)
import pickle # constants dataset_version = "data" print_topX = 10 print_report = True print_cm = False save_fig = True show_fig = False use_comps = False use_ab = True use_ti = True test_percent = 0.25 scoring = "precision" (feature_names_comps, feature_names_ab, feature_names_ti, X_comps, X_ab, X_ti, y) = get_data(dataset_version) # <codecell> ############################################################################ # extract features via chi2 # assemble X_train, X_test, and feature_names print("assembling features") t0 = time() (X_c_train, X_c_test, X_ab_train, X_ab_test, X_ti_train, X_ti_test, y_train, y_test) = train_test_split( X_comps, X_ab, X_ti, y, test_size=test_percent ) feature_names = []
print() clf_descr = str(clf).split('(')[0] return clf_descr, score, train_time, test_time, clf, pred # <codecell> for select_chi2 in select_chi2s: # <codecell> ################################################################################ # load data (feature_names_comps, feature_names_ab, feature_names_ti, X_comps, X_ab, X_ti, y) = get_data(dataset_version) # <codecell> ############################################################################ # extract features via chi2 # assemble X_train, X_test, and feature_names print("assembling features") t0 = time() (X_c_train, X_c_test, X_ab_train, X_ab_test, X_ti_train, X_ti_test, y_train, y_test) = train_test_split(X_comps, X_ab, X_ti, y, test_size=test_percent) feature_names = []
import methods import config import datetime data_set = 'records.txt' records_list = methods.get_data(data_set) while True: methods.message() try: s = input('Choose action: ') if s == '1': phone_list = methods.get_bank_list(records_list) cards = methods.get_my_cards_list(records_list) k = 1 for p in phone_list: current_funds = methods.get_account_states(records_list, p) try: print( str(k) + '. *' + cards[k - 1] + ' (' + config.banks[p] + ') : {money} USD'.format( money=methods.get_account_states(records_list, p))) k = k + 1 except KeyError as ke: print( str(k) + '. *' + cards[k - 1] + ' (Bank' + str(k) + ') : {money} USD'.format( money=methods.get_account_states(records_list, p))) k = k + 1
print() clf_descr = str(clf).split('(')[0] return clf_descr, score, train_time, test_time, clf, pred # <codecell> for select_chi2 in select_chi2s: # <codecell> ################################################################################ # load data (feature_names_comps, feature_names_ab, feature_names_ti, X_comps, X_ab, X_ti, y) = get_data(dataset_version) # <codecell> ############################################################################ # extract features via chi2 # assemble X_train, X_test, and feature_names print("assembling features") t0 = time() (X_c_train, X_c_test, X_ab_train, X_ab_test, X_ti_train, X_ti_test, y_train, y_test) = train_test_split(X_comps, X_ab, X_ti, y, test_size=test_percent)
categories = ["1"] bm = Benchmarker(print_topX, print_report, print_cm) def benchmark(clf): return bm.benchmark(clf) # <codecell> ################################################################################ # load data feature_names_comps, feature_names_tfidf, X_train_comps, X_train_tfidf, X_test_comps, X_test_tfidf, y_train, y_test = get_data( dataset_version) # <codecell> ################################################################################ # extract features via chi2 # assemble X_train, X_test, and feature_names # if select_chi2: print("Extracting %d best features by a chi-squared test" % select_chi2) t0 = time() ch2 = SelectKBest(chi2, k=select_chi2) X_train_ch2 = ch2.fit_transform(X_train_tfidf, y_train) X_train = hstack([X_train_comps, X_train_ch2]) X_test_ch2 = ch2.transform(X_test_tfidf) X_test = hstack([X_test_comps, X_test_ch2])
print_cm=False save_fig=True categories = ["1"] bm = Benchmarker(print_topX, print_report, print_cm) def benchmark(clf): return bm.benchmark(clf) # <codecell> ################################################################################ # load data feature_names_comps, feature_names_tfidf, X_train_comps, X_train_tfidf, X_test_comps, X_test_tfidf, y_train, y_test = get_data(dataset_version) # <codecell> ################################################################################ # extract features via chi2 # assemble X_train, X_test, and feature_names # if select_chi2: print("Extracting %d best features by a chi-squared test" % select_chi2) t0 = time() ch2 = SelectKBest(chi2, k=select_chi2) X_train_ch2 = ch2.fit_transform(X_train_tfidf, y_train) X_train = hstack([X_train_comps, X_train_ch2])
from hashtag import Hashtag from methods import get_data myHashtags = ('lodz') for element in myHashtags: newHashtag = Hashtag(element) request = get_data(newHashtag) # result = put_dictionary(newHashtag) # print_dictionary(result)