# ######################################################### df_slab = get_df_slab() # ######################################################### df_jobs_paths = get_df_jobs_paths() # ######################################################### df_jobs_data = get_df_jobs_data() # ######################################################### df_jobs_anal = get_df_jobs_anal() df_jobs_anal_completed = df_jobs_anal[df_jobs_anal.job_completely_done == True] # ######################################################### df_init_slabs = get_df_init_slabs() # - # # Removing rows that don't have the necessary files present locally # # Might need to download them with rclone indices_tmp = [ ('sherlock', 'ripirefu_15', 'bare', 62.0, 1), ('sherlock', 'ripirefu_15', 'bare', 66.0, 1), ('sherlock', 'ripirefu_15', 'bare', 67.0, 1), ('sherlock', 'ripirefu_15', 'oh', 49.0, 0), ('sherlock', 'ripirefu_15', 'oh', 49.0, 2), ('sherlock', 'ripirefu_15', 'oh', 49.0, 3), ('sherlock', 'ripirefu_15', 'oh', 62.0, 0), ('sherlock', 'ripirefu_15', 'oh', 62.0, 1),
# ### Save data to pickle # Pickling data ########################################### directory = os.path.join(os.environ["PROJ_irox_oer"], "dft_workflow/job_analysis/get_init_slabs_bare_oh", "out_data") if not os.path.exists(directory): os.makedirs(directory) with open(os.path.join(directory, "df_init_slabs.pickle"), "wb") as fle: pickle.dump(df_init_slabs, fle) # ######################################################### # + from methods import get_df_init_slabs df_init_slabs_tmp = get_df_init_slabs() df_init_slabs_tmp.head() # - # ######################################################### print(20 * "# # ") print("All done!") print("Run time:", np.round((time.time() - ti) / 60, 3), "min") print("get_init_slabs_bare_oh.ipynb") print(20 * "# # ") # ######################################################### # + active="" # # #