# Pickling data ########################################### import os; import pickle directory = os.path.join( os.environ["PROJ_irox_oer"], "dft_workflow/job_analysis/create_oh_slabs", "out_data") if not os.path.exists(directory): os.makedirs(directory) with open(os.path.join(directory, "df_slabs_oh.pickle"), "wb") as fle: pickle.dump(df_slabs_oh, fle) # ######################################################### # + from methods import get_df_slabs_oh df_slabs_oh_tmp = get_df_slabs_oh() # df_slabs_oh_tmp # - # ######################################################### print(20 * "# # ") print("All done!") print("Run time:", np.round((time.time() - ti) / 60, 3), "min") print("create_oh_slabs.ipynb") print(20 * "# # ") # ######################################################### # + active="" # # #
get_df_init_slabs, get_df_magmoms, ) # # Read Data df_dft = get_df_dft() df_job_ids = get_df_job_ids() df_jobs = get_df_jobs(exclude_wsl_paths=True) df_jobs_data = get_df_jobs_data(exclude_wsl_paths=True) df_jobs_data_clusters = get_df_jobs_data_clusters() df_slab = get_df_slab() df_slab_ids = get_df_slab_ids() df_jobs_anal = get_df_jobs_anal() df_jobs_paths = get_df_jobs_paths() df_slabs_oh = get_df_slabs_oh() df_init_slabs = get_df_init_slabs() df_magmoms = get_df_magmoms() # # Writing finished *O slabs to file # + df_jobs_anal_i = df_jobs_anal[df_jobs_anal.job_completely_done == True] var = "o" df_jobs_anal_i = df_jobs_anal_i.query('ads == @var') for i_cnt, (name_i, row_i) in enumerate(df_jobs_anal_i.iterrows()): # ##################################################### compenv_i = name_i[0]