Exemple #1
0
def test_skewt_shade_area_invalid(test_profile):
    """Test shading areas on a SkewT plot."""
    p, t, tp = test_profile
    fig = plt.figure(figsize=(9, 9))
    skew = SkewT(fig)
    skew.plot(p, t, 'r')
    skew.plot(p, tp, 'k')
    with pytest.raises(ValueError):
        skew.shade_area(p, t, tp, which='positve')
def plot_sounding(date, station):
    p, T, Td, u, v, windspeed = get_sounding_data(date, station)

    lcl_pressure, lcl_temperature = mpcalc.lcl(p[0], T[0], Td[0])
    lfc_pressure, lfc_temperature = mpcalc.lfc(p, T, Td)
    parcel_path = mpcalc.parcel_profile(p, T[0], Td[0]).to('degC')

    # Create a new figure. The dimensions here give a good aspect ratio
    fig = plt.figure(figsize=(8, 8))
    skew = SkewT(fig)

    # Plot the data
    temperature_line, = skew.plot(p, T, color='tab:red')
    dewpoint_line, = skew.plot(p, Td, color='blue')
    cursor = mplcursors.cursor([temperature_line, dewpoint_line])

    # Plot thermodynamic parameters and parcel path
    skew.plot(p, parcel_path, color='black')

    if lcl_pressure:
        skew.ax.axhline(lcl_pressure, color='black')

    if lfc_pressure:
        skew.ax.axhline(lfc_pressure, color='0.7')

    # Add the relevant special lines
    skew.ax.axvline(0, color='c', linestyle='--', linewidth=2)
    skew.plot_dry_adiabats()
    skew.plot_moist_adiabats()
    skew.plot_mixing_lines()

    # Shade areas representing CAPE and CIN
    skew.shade_cin(p, T, parcel_path)
    skew.shade_cape(p, T, parcel_path)

    # Add wind barbs
    skew.plot_barbs(p, u, v)

    # Add an axes to the plot
    ax_hod = inset_axes(skew.ax, '30%', '30%', loc=1, borderpad=3)

    # Plot the hodograph
    h = Hodograph(ax_hod, component_range=100.)

    # Grid the hodograph
    h.add_grid(increment=20)

    # Plot the data on the hodograph
    mask = (p >= 100 * units.mbar)
    h.plot_colormapped(u[mask], v[mask], windspeed[mask])  # Plot a line colored by wind speed

    # Set some sensible axis limits
    skew.ax.set_ylim(1000, 100)
    skew.ax.set_xlim(-40, 60)

    return fig, skew
Exemple #3
0
def test_skewt_shade_area(test_profile):
    """Test shading areas on a SkewT plot."""
    p, t, tp = test_profile
    fig = plt.figure(figsize=(9, 9))
    skew = SkewT(fig)
    skew.plot(p, t, 'r')
    skew.plot(p, tp, 'k')
    skew.shade_area(p, t, tp)
    skew.ax.set_xlim(-50, 50)
    return fig
Exemple #4
0
def test_skewt_shade_cape_cin(test_profile):
    """Test shading CAPE and CIN on a SkewT plot."""
    p, t, tp = test_profile
    fig = plt.figure(figsize=(9, 9))
    skew = SkewT(fig)
    skew.plot(p, t, 'r')
    skew.plot(p, tp, 'k')
    skew.shade_cape(p, t, tp)
    skew.shade_cin(p, t, tp)
    skew.ax.set_xlim(-50, 50)
    return fig
Exemple #5
0
def test_skewt_shade_area_kwargs(test_profile):
    """Test shading areas on a SkewT plot with kwargs."""
    p, t, tp = test_profile

    with matplotlib.rc_context({'axes.autolimit_mode': 'data'}):
        fig = plt.figure(figsize=(9, 9))
        skew = SkewT(fig)
        skew.plot(p, t, 'r')
        skew.plot(p, tp, 'k')
        skew.shade_area(p, t, tp, facecolor='m')
        skew.ax.set_xlim(-50, 50)
    return fig
Exemple #6
0
def test_skewt_shade_cape_cin(test_profile):
    """Test shading CAPE and CIN on a SkewT plot."""
    p, t, tp = test_profile

    with matplotlib.rc_context({'axes.autolimit_mode': 'data'}):
        fig = plt.figure(figsize=(9, 9))
        skew = SkewT(fig)
        skew.plot(p, t, 'r')
        skew.plot(p, tp, 'k')
        skew.shade_cape(p, t, tp)
        skew.shade_cin(p, t, tp)
        skew.ax.set_xlim(-50, 50)

    return fig
Exemple #7
0
def test_skewt_api():
    """Test the SkewT API."""
    fig = plt.figure(figsize=(9, 9))
    skew = SkewT(fig)

    # Plot the data using normal plotting functions, in this case using
    # log scaling in Y, as dictated by the typical meteorological plot
    p = np.linspace(1000, 100, 10)
    t = np.linspace(20, -20, 10)
    u = np.linspace(-10, 10, 10)
    skew.plot(p, t, 'r')
    skew.plot_barbs(p, u, u)

    # Add the relevant special lines
    skew.plot_dry_adiabats()
    skew.plot_moist_adiabats()
    skew.plot_mixing_lines()

    return fig
Exemple #8
0
def test_skewt_api():
    """Test the SkewT API."""
    with matplotlib.rc_context({'axes.autolimit_mode': 'data'}):
        fig = plt.figure(figsize=(9, 9))
        skew = SkewT(fig)

        # Plot the data using normal plotting functions, in this case using
        # log scaling in Y, as dictated by the typical meteorological plot
        p = np.linspace(1000, 100, 10)
        t = np.linspace(20, -20, 10)
        u = np.linspace(-10, 10, 10)
        skew.plot(p, t, 'r')
        skew.plot_barbs(p, u, u)

        skew.ax.set_xlim(-20, 30)
        skew.ax.set_ylim(1000, 100)

        # Add the relevant special lines
        skew.plot_dry_adiabats()
        skew.plot_moist_adiabats()
        skew.plot_mixing_lines()

    return fig
Exemple #9
0
def plot_sounding(date, station):
    p, T, Td, u, v, windspeed = get_sounding_data(date, station)

    lcl_pressure, lcl_temperature = mpcalc.lcl(p[0], T[0], Td[0])
    lfc_pressure, lfc_temperature = mpcalc.lfc(p, T, Td)
    parcel_path = mpcalc.parcel_profile(p, T[0], Td[0]).to('degC')

    # Create a new figure. The dimensions here give a good aspect ratio
    fig = plt.figure(figsize=(8, 8))
    skew = SkewT(fig)

    # Plot the data
    skew.plot(p, T, color='tab:red')
    skew.plot(p, Td, color='tab:green')

    # Plot thermodynamic parameters and parcel path
    skew.plot(p, parcel_path, color='black')

    if lcl_pressure:
        skew.ax.axhline(lcl_pressure, color='black')

    if lfc_pressure:
        skew.ax.axhline(lfc_pressure, color='0.7')

    # Add the relevant special lines
    skew.ax.axvline(0, color='c', linestyle='--', linewidth=2)
    skew.plot_dry_adiabats()
    skew.plot_moist_adiabats()
    skew.plot_mixing_lines()

    # Shade areas representing CAPE and CIN
    skew.shade_cin(p, T, parcel_path)
    skew.shade_cape(p, T, parcel_path)

    # Add wind barbs
    skew.plot_barbs(p, u, v)

    # Add an axes to the plot
    ax_hod = inset_axes(skew.ax, '30%', '30%', loc=1, borderpad=3)

    # Plot the hodograph
    h = Hodograph(ax_hod, component_range=100.)

    # Grid the hodograph
    h.add_grid(increment=20)

    # Plot the data on the hodograph
    mask = (p >= 100 * units.mbar)
    h.plot_colormapped(u[mask], v[mask],
                       windspeed[mask])  # Plot a line colored by wind speed

    # Set some sensible axis limits
    skew.ax.set_ylim(1000, 100)
    skew.ax.set_xlim(-40, 60)

    return fig, skew
def Skew_T_diagram(T, z, wv):
    """ Plot a Skew-T diagram. Credits @ MetPy: https://unidata.github.io/MetPy/latest/index.html """

    from metpy.plots import SkewT

    P = P_env(z) / 100
    wvs = wv_sat(T, z)

    Td = T_dew(wv, z)
    env = T_env(z)

    zLCL = np.argmin(abs(T - Td))
    P_LCL = P[:zLCL]
    Td = Td[:zLCL]

    fig = plt.figure(figsize=(11, 11))

    skew = SkewT(fig, rotation=45)
    skew.plot(P_LCL, Td, 'b', linewidth=3, label='T_dew')
    skew.plot(P, T, 'r', linewidth=3, label='T_parc')
    skew.plot(P, env, 'g', linewidth=3, label='T_env')
    skew.plot_dry_adiabats()
    skew.plot_moist_adiabats()
    skew.plot_mixing_lines()
    skew.ax.set_ylim(1010, 100)

    skew.plot(P[zLCL],
              T[zLCL],
              '.k',
              markersize=15,
              label='LCL = %.1f km' % np.round(z[zLCL] / 1000, 1))

    skew.shade_cin(P[zLCL:], env[zLCL:], T[zLCL:], label='Level above LFC')
    skew.shade_cape(P[zLCL:], env[zLCL:], T[zLCL:], label='CAPE')

    plt.legend()

    skew.ax.set_xlim(-30, 40)
    skew.ax.set_xlabel('Temperature [C]')
    skew.ax.set_ylabel('Pressure [hPa]')
    skew.ax.set_title('Skew-T diagram Essen Sounding')

    return plt.show()
def plot_skewt(df):
    # We will pull the data out of the example dataset into individual variables
    # and assign units.
    p = df['pressure'].values * units.hPa
    T = df['temperature'].values * units.degC
    Td = df['dewpoint'].values * units.degC
    wind_speed = df['speed'].values * units.knots
    wind_dir = df['direction'].values * units.degrees
    u, v = mpcalc.wind_components(wind_speed, wind_dir)

    # Create a new figure. The dimensions here give a good aspect ratio.
    fig = plt.figure(figsize=(9, 9))
    add_metpy_logo(fig, 115, 100)
    skew = SkewT(fig, rotation=45)

    # Plot the data using normal plotting functions, in this case using
    # log scaling in Y, as dictated by the typical meteorological plot
    skew.plot(p, T, 'r')
    skew.plot(p, Td, 'g')
    skew.plot_barbs(p, u, v)
    skew.ax.set_ylim(1000, 100)
    skew.ax.set_xlim(-40, 60)

    # Calculate LCL height and plot as black dot
    lcl_pressure, lcl_temperature = mpcalc.lcl(p[0], T[0], Td[0])
    skew.plot(lcl_pressure, lcl_temperature, 'ko', markerfacecolor='black')

    # Calculate full parcel profile and add to plot as black line
    prof = mpcalc.parcel_profile(p, T[0], Td[0]).to('degC')
    skew.plot(p, prof, 'k', linewidth=2)

    # An example of a slanted line at constant T -- in this case the 0
    # isotherm
    skew.ax.axvline(0, color='c', linestyle='--', linewidth=2)

    # Add the relevant special lines
    skew.plot_dry_adiabats()
    skew.plot_moist_adiabats()
    skew.plot_mixing_lines()

    return skew
Exemple #12
0
def plot_skew(sound_path=sound_path, date='2018-01-16T12:00', two=False):
    from metpy.plots import SkewT
    from metpy.units import units
    import matplotlib.pyplot as plt
    import pandas as pd
    import xarray as xr
    da = xr.open_dataarray(sound_path / 'ALL_bet_dagan_soundings.nc')
    p = da.sel(time=date, var='PRES').values * units.hPa
    dt = pd.to_datetime(da.sel(time=date).time.values)
    if not two:
        T = da.sel(time=date, var='TEMP').values * units.degC
        Td = da.sel(time=date, var='DWPT').values * units.degC
        Vp = VaporPressure(da.sel(time=date, var='TEMP').values) * units.Pa
        dt = pd.to_datetime(da.sel(time=date).time.values)
        fig = plt.figure(figsize=(9, 9))
        title = da.attrs['description'] + ' ' + dt.strftime('%Y-%m-%d %H:%M')
        skew = SkewT(fig)
        skew.plot(p, T, 'r', linewidth=2)
        skew.plot(p, Td, 'g', linewidth=2)
        # skew.ax.plot(p, Vp, 'k', linewidth=2)
        skew.ax.set_title(title)
        skew.ax.legend(['Temp', 'Dewpoint'])
    elif two:
        dt1 = pd.to_datetime(dt.strftime('%Y-%m-%dT00:00'))
        dt2 = pd.to_datetime(dt.strftime('%Y-%m-%dT12:00'))
        T1 = da.sel(time=dt1, var='TEMP').values * units.degC
        T2 = da.sel(time=dt2, var='TEMP').values * units.degC
        fig = plt.figure(figsize=(9, 9))
        title = da.attrs['description'] + ' ' + dt.strftime('%Y-%m-%d')
        skew = SkewT(fig)
        skew.plot(p, T1, 'r', linewidth=2)
        skew.plot(p, T2, 'b', linewidth=2)
        # skew.ax.plot(p, Vp, 'k', linewidth=2)
        skew.ax.set_title(title)
        skew.ax.legend([
            'Temp at ' + dt1.strftime('%H:%M'),
            'Temp at ' + dt2.strftime('%H:%M')
        ])
    return
Exemple #13
0
    def plot_skewt(self):
        """
        :param adjusted_data: receives the post processed dataframe
        :param valid:
        :return:
        """
        for area in self.airports:
            for airport in self.airports[area]:
                lon = self.airports[area][airport]['lon']
                lat = self.airports[area][airport]['lat']
                pressure_levels = self.levels * units.hPa
                tair = list(
                    self.create_profile_variable(self.tair, lat,
                                                 lon).values()) * units.degC
                dewp = list(
                    self.create_profile_variable(self.dewp, lat,
                                                 lon).values()) * units.degC
                u_wnd = list(self.create_profile_variable(self.u_wnd, lat, lon).values()) * \
                        units('meters / second').to('knots')
                v_wnd = list(self.create_profile_variable(self.v_wnd, lat, lon).values()) * \
                        units('meters / second').to('knots')

                # Create a new figure. The dimensions here give a good aspect ratio.
                fig = plt.figure(figsize=(12, 9))
                skew = SkewT(fig, rotation=45)

                # Plot the data using normal plotting functions, in this case using
                # log scaling in Y, as dictated by the typical meteorological plot
                skew.plot(pressure_levels, tair, 'r')
                skew.plot(pressure_levels, dewp, 'g')
                skew.plot_barbs(pressure_levels, u_wnd, v_wnd)
                skew.ax.set_ylim(1020, 100)
                skew.ax.set_xlim(-40, 60)

                # Calculate LCL height and plot as black dot
                lcl_pressure, lcl_temperature = mpcalc.lcl(
                    pressure_levels[0], tair[0], dewp[0])
                skew.plot(lcl_pressure,
                          lcl_temperature,
                          'ko',
                          markerfacecolor='black')

                # Calculate full parcel profile and add to plot as black line
                prof = mpcalc.parcel_profile(pressure_levels, tair[0], dewp[0])
                skew.plot(pressure_levels, prof, 'k', linewidth=2)

                # An example of a slanted line at constant T -- in this case the 0
                # isotherm
                skew.ax.axvline(0, color='c', linestyle='--', linewidth=2)

                # Add the relevant special lines
                skew.plot_dry_adiabats()
                skew.plot_moist_adiabats()
                skew.plot_mixing_lines()

                skew.shade_cape(pressure_levels, tair, prof)
                skew.shade_cin(pressure_levels, tair, prof)
                plt.title(
                    f'Perfil vertical (GFS) de {airport} valido para {self.time_stamp}',
                    fontsize=16,
                    ha='center')
                sounding_output_path = f'{self.output_path}/{area}/{airport}'
                Path(sounding_output_path).mkdir(parents=True, exist_ok=True)
                plt.savefig(
                    f'{sounding_output_path}/sounding_{airport}_{self.time_step:02d}.jpg'
                )

        return skew
print('Calculating moist adiabats...')
for i in range(N_sample_pts):
    if i % 10 == 0:
        print(i)
    T_data[i, :] = moist_lapse(temperature=T_data[i, 0] * units('K'),
                               pressure=pressures * units('Pa'))

# Keep T constant above 200 hPa for a Tropopause
for i in range(len(pressures)):
    if pressures[i] / 100 < 200:
        T_data[:, i] = T_data[:, i - 1]

# Debug plots:
f = plt.figure(figsize=(9, 9))
skew = SkewT(f, rotation=45)
for i in range(N_sample_pts):
    skew.plot(pressures / 100, T_data[i, :] - 273.15, 'r')
skew.ax.set_ylim(1000, 100)
skew.ax.set_xlim(minT - 273.15 - 5, maxT - 273.15 + 5)
skew.plot_moist_adiabats()
plt.show()

# Save data
fname = 'moist_adiabat_data.npz'
np.savez(fname,
         pressures=pressures,
         T_surf_sample=T_surf_sample,
         T_data=T_data)
print('Data saved in {}.'.format(fname))
Exemple #15
0
    dataset = get_upper_air_data(datetime(1999, 5, 4, 0), 'OUN')

p = dataset.variables['pressure'][:]
T = dataset.variables['temperature'][:]
Td = dataset.variables['dewpoint'][:]
u = dataset.variables['u_wind'][:]
v = dataset.variables['v_wind'][:]

###########################################
# Create a new figure. The dimensions here give a good aspect ratio
fig = plt.figure(figsize=(9, 9))
skew = SkewT(fig, rotation=45)

# Plot the data using normal plotting functions, in this case using
# log scaling in Y, as dictated by the typical meteorological plot
skew.plot(p, T, 'r')
skew.plot(p, Td, 'g')
skew.plot_barbs(p, u, v)
skew.ax.set_ylim(1000, 100)
skew.ax.set_xlim(-40, 60)

# Calculate LCL height and plot as black dot
l = mpcalc.lcl(p[0], T[0], Td[0])
lcl_temp = mpcalc.dry_lapse(concatenate((p[0], l)), T[0])[-1].to('degC')
skew.plot(l, lcl_temp, 'ko', markerfacecolor='black')

# Calculate full parcel profile and add to plot as black line
prof = mpcalc.parcel_profile(p, T[0], Td[0]).to('degC')
skew.plot(p, prof, 'k', linewidth=2)

# Example of coloring area between profiles
Exemple #16
0
p = dataset['pressure'].values * units(dataset.units['pressure'])
#ip100 = np.where(p.magnitude==100.)[0][0]+1
#p = p[:ip100]
T = dataset['temperature'].values * units(dataset.units['temperature'])
#T = T[:ip100]
Td = dataset['dewpoint'].values * units(dataset.units['dewpoint'])
#Td = Td[:ip100]
u = dataset['u_wind'].values * units(dataset.units['u_wind'])
#u = u[:ip100]
v = dataset['v_wind'].values * units(dataset.units['v_wind'])
#v = v[:ip100]

fig = plt.figure(figsize=(9, 9))
skew = SkewT(fig)
skew.plot(p, T, 'r')
skew.plot(p, Td, 'g')
skew.plot_barbs(p[:-1:2], u[:-1:2], v[:-1:2])
skew.plot_dry_adiabats()
skew.plot_moist_adiabats()
skew.plot_mixing_lines()
skew.ax.set_ylim(1000, 100)
skew.ax.set_xlim(-40, 60)
prof = metcalc.parcel_profile(p, T[0], Td[0]).to('degC')
skew.plot(p, prof, 'k', linewidth=2)
plt.title('KILX ROAB Obs 00 UTC 27 June 2018', loc='center')
plt.savefig(
    '/home/jhemedinger/suli_projects/chicago-nowcast/images/ilx_sounding_00UTC.png',
    dpi=300)
plt.show()
# Wind shear
bulkshear = wind_kts[-3] - wind_kts[0]
print '0-{0:.0f} m Bulk Shear: {1:.0f} kts'.format(sampleHeights_m[-3],
                                                   bulkshear)

######################
## Create SkewTLogP ##
######################

print 'Plotting...'
fig5 = plt.figure(figsize=(10.125, 9))
gs = gridspec.GridSpec(5, 4)
skew = SkewT(fig5, rotation=20, subplot=gs[:, :2])

skew.plot(pres, Tmean, 'r', linewidth=2)
skew.plot(pres, Td, 'g', linewidth=2)
skew.plot_barbs(pres[0::4], u[0::4], v[0::4], x_clip_radius = 0.12, \
    y_clip_radius = 0.12)

# Plot mesonet surface data and winds
skew.plot(pmeso, T2meso, 'k*', linewidth=2, label='Mesonet 2 m T')
skew.plot(pres[0], T9meso, 'r*', linewidth=2, label='Mesonet 9 m T')
skew.plot(pmeso, Td2meso, 'g*', linewidth=2, label='Mesonet 2 m Td')
skew.plot_barbs(pmeso, umeso, vmeso, barbcolor='r', label='Mesonet 10 m Wind')

hand, lab = skew.ax.get_legend_handles_labels()

# Plot convective parameters
if isRH:
    skew.plot(lclpres, lcltemp, 'ko', markerfacecolor='black')
Exemple #18
0
#
# 3. Plot the pressure and temperature (note that the pressure,
#    the independent variable, is first even though it is plotted on the y-axis).
#
# 4. Plot the pressure and dewpoint temperature.
#
# 5. Plot the wind barbs at the appropriate pressure using the u and v wind
#    components.

# Create a new figure. The dimensions here give a good aspect ratio
fig = plt.figure(figsize=(9, 9))
skew = SkewT(fig)

# Plot the data using normal plotting functions, in this case using
# log scaling in Y, as dictated by the typical meteorological plot
skew.plot(p, T, 'r', linewidth=2)
skew.plot(p, Td, 'g', linewidth=2)
skew.plot_barbs(p, u, v)

# Show the plot
plt.show()

##########################################################################
# Advanced Skew-T Plotting
# ------------------------
#
# Fiducial lines indicating dry adiabats, moist adiabats, and mixing ratio are
# useful when performing further analysis on the Skew-T diagram. Often the
# 0C isotherm is emphasized and areas of CAPE and CIN are shaded.

# Create a new figure. The dimensions here give a good aspect ratio
Exemple #19
0
rho = atmos.calculate('rho', **data)

dpdz = rho * 9.8
heights = np.zeros_like(p)
heights[0] = 10.0
for i in range(1,len(heights)):
    heights[i] = ((((p[i-1] - p[i])*100.)) / dpdz[i-1]) + heights[i-1]

p=p*units.hPa45
T=T*units.degC
Td=Td*units.degC

fig = plt.figure(figsize=(9, 9))45
skew = SkewT(fig, rotation=45)

skew.plot(p, T, 'r',linewidth=2)
skew.plot(p, Td, 'g',linewidth=2)
skew.plot_barbs(p, u, v)
skew.ax.set_ylim(1000, 100)
skew.ax.set_xlim(-40,60)

cape, cin, prof = get_cape(filename,'ml')
print cape
prof = prof-273.15
skew.plot(p, prof, 'k')

skew.plot_dry_adiabats()
skew.plot_moist_adiabats()
skew.plot_mixing_lines()
#skew.ax.set_title('August 11')
Exemple #20
0
def plotUAVskewT(filenamecsv):
	'''
	Input filepath of post-processed uav data

	Outputs Skew-T log-p plot of UAV data, includes hodograph and some
	convective parameters
	'''
	copdata = csvread_copter(filenamecsv)
	lat = copdata[0]
	lon = copdata[1]
	alt = copdata[2]
	pressure = copdata[3]
	temperature = copdata[4]
	dewpoint = copdata[5]
	speed = copdata[9]
	speed_kts = speed * 1.94
	direction = copdata[10]
	site = findSite(lat[0], lon[0])
	sitename, sitelong = site.split('/')
	fname = filenamecsv.split('\\')[-1]
	timeTakeoff = datetime.strptime(fname[:15], '%Y%m%d_%H%M%S')
	copterNum = fname[-10]

	u,v = mcalc.get_wind_components(speed_kts*units.kts, direction * units.deg)
	u = u.to(units.kts)
	v = v.to(units.kts)
	# Wind shear
	bulkshear = speed_kts[-3] - speed_kts[0]
	print '0-%d m Bulk Shear: %.0f kts' % (alt[-3], bulkshear)
	if np.isnan(dewpoint).all():
		moist = 0
	else: 
		moist = 1


	print 'Plotting...'
	fignum = plt.figure(figsize=(12,9))
	gs = gridspec.GridSpec(4, 4)
	skew = SkewT(fignum, rotation=20, subplot=gs[:, :2])

	skew.plot(pressure, temperature, 'r', linewidth = 2)
	skew.plot(pressure, dewpoint, 'g', linewidth = 2)
	skew.plot_barbs(pressure[0::4], u[0::4], v[0::4], x_clip_radius = 0.12, \
	    y_clip_radius = 0.12)

	# Plot convective parameters
	if moist:
		plcl, Tlcl, isbelowlcl, profile = parcelUAV(temperature,
			dewpoint, pressure)
		SBCAPE = uavCAPE(temperature * units.degC, profile,
			pressure * units.hPa)
		skew.plot(plcl, Tlcl, 'ko', markerfacecolor='black')
		skew.plot(pressure, profile, 'k', linewidth=2)
	else:
		isbelowlcl = 0

	# set up plot limits and labels - use LCL as max if higher than profile
	# if moist:
	#     xmin = math.floor(np.nanmin(dewpoint)) + 2
	# else:
	#     xmin = math.floor(np.nanmin(temperature))
	# xmax = math.floor(np.nanmax(temperature)) + 20
	xmin = 0.
	xmax = 50.
	if isbelowlcl:
	    ymin = round((plcl / units.mbar), -1) - 10
	else:
	    ymin = round(np.nanmin(pressure),-1) - 10
	    
	ymax = round(np.nanmax(pressure),-1) + 10

	skew.ax.set_ylim(ymax, ymin)
	skew.ax.set_xlim(xmin, xmax)
	skew.ax.set_yticks(np.arange(ymin, ymax+10, 10))

	skew.ax.set_xlabel('Temperature ($^\circ$C)')
	skew.ax.set_ylabel('Pressure (hPa)')
	titleName = 'Coptersonde-%s %s UTC - %s' % (copterNum, 
	    timeTakeoff.strftime('%d-%b-%Y %H:%M:%S'), sitename)
	skew.ax.set_title(titleName)

	skew.plot_dry_adiabats(linewidth=0.75)
	skew.plot_moist_adiabats(linewidth=0.75)
	skew.plot_mixing_lines(linewidth=0.75)

	# Hodograph
	ax_hod = fignum.add_subplot(gs[:2,2:])
	#gs.tight_layout(fig5)
	if np.nanmax(speed_kts) > 18:
	    comprange = 35
	else:
	    comprange = 20

	h = Hodograph(ax_hod, component_range=comprange)
	h.add_grid(increment=5)
	h.plot_colormapped(u, v, pressure, cmap=cmocean.cm.deep_r)
	ax_hod.set_title('Hodograph (kts)')
	ax_hod.yaxis.set_ticklabels([])
	#ax_hod.set_xlabel('Wind Speed (kts)')

	# Map - Oklahoma
	llcrnrlat = 33.6
	urcrnrlat = 37.2
	llcrnrlon = -103.2
	urcrnrlon = -94.2
	ax_map = fignum.add_subplot(gs[2, 2:])

	m = Basemap(projection='merc', llcrnrlat=llcrnrlat, urcrnrlat=urcrnrlat, 
	    llcrnrlon=llcrnrlon,urcrnrlon=urcrnrlon, lat_ts=20, resolution='l',
	    ax=ax_map)

	print 'Basemap...'
	m.drawcounties()
	m.drawstates()
	x,y = m(lon[0], lat[0])
	plt.plot(x,y,'b.')
	plt.text(x+40000, y-5000, sitelong, 
		bbox=dict(facecolor='yellow', alpha=0.5))

	if moist:
	    # Convective parameter values
	    ax_data = fignum.add_subplot(gs[3, 2])
	    plt.axis('off')
	    datastr = 'LCL = %.0f hPa\nSBCAPE = %.0f J kg$^{-1}$\n0-%.0f m bulk shear\n\
	    = %.0f kts' % \
	        (plcl.magnitude, SBCAPE.magnitude, alt[-3], bulkshear)
	    boxprops = dict(boxstyle='round', facecolor='none')
	    ax_data.text(0.05, 0.95, datastr, transform=ax_data.transAxes, 
	    	fontsize=14, verticalalignment='top', bbox=boxprops)
	    # Logos
	    ax_png = fignum.add_subplot(gs[3, 3])
	    img = mpimg.imread(logoName)
	    plt.axis('off')
	    plt.imshow(img)
	else:
	    # Logos
	    ax_png = fignum.add_subplot(gs[3, 2:])
	    img = mpimg.imread(logoName)
	    plt.axis('off')
	    plt.imshow(img)

	plt.show(block=False)
	return
Exemple #21
0
def main():
    img_dir = Path("hail_plots/soundings/")

    if not img_dir.exists():
        img_dir.mkdir(parents=True)


    data_dir = Path("/HOME/huziy/skynet3_rech1/hail/soundings_from_erai/")

    # dates = [datetime(1991, 9, 7), datetime(1991, 9, 7, 6), datetime(1991, 9, 7, 12), datetime(1991, 9, 7, 18),
    #          datetime(1991, 9, 8, 0), datetime(1991, 9, 8, 18)]
    #
    # dates.extend([datetime(1991, 9, 6, 0), datetime(1991, 9, 6, 6), datetime(1991, 9, 6, 12), datetime(1991, 9, 6, 18)])
    #
    # dates = [datetime(1990, 7, 7), datetime(2010, 7, 12), datetime(1991, 9, 8, 0)]



    dates_s = """
- 07/09/1991 12:00
- 07/09/1991 18:00
- 08/09/1991 00:00
- 08/09/1991 06:00
- 08/09/1991 12:00
- 13/09/1991 12:00
- 13/09/1991 18:00
- 14/09/1991 00:00
- 14/09/1991 06:00
- 14/09/1991 12:00
    """

    dates = [datetime.strptime(line.strip()[1:].strip(), "%d/%m/%Y %H:%M") for line in dates_s.split("\n") if line.strip() != ""]




    def __date_parser(s):
        return pd.datetime.strptime(s, '%Y-%m-%d %H:%M:%S')


    tt = pd.read_csv(data_dir.joinpath("TT.csv"), index_col=0, parse_dates=['Time'])
    uu = pd.read_csv(data_dir.joinpath("UU.csv"), index_col=0, parse_dates=['Time'])
    vv = pd.read_csv(data_dir.joinpath("VV.csv"), index_col=0, parse_dates=['Time'])
    hu = pd.read_csv(data_dir.joinpath("HU.csv"), index_col=0, parse_dates=['Time'])


    print(tt.head())
    print([c for c in tt])
    print(list(tt.columns.values))




    temp_perturbation_degc = 0

    for the_date in dates:

        p = np.array([float(c) for c in tt])

        fig = plt.figure(figsize=(9, 9))
        skew = SkewT(fig)

        skew.ax.set_ylim(1000, 100)
        skew.ax.set_xlim(-40, 60)


        tsel = tt.select(lambda d: d == the_date)
        usel = uu.select(lambda d: d == the_date)
        vsel = vv.select(lambda d: d == the_date)
        husel = hu.select(lambda d: d == the_date)


        tvals = tsel.values.mean(axis=0)
        uvals = usel.values.mean(axis=0) * mul_mpers_per_knot
        vvals = vsel.values.mean(axis=0) * mul_mpers_per_knot
        huvals = husel.values.mean(axis=0) * units("g/kg")


        # ignore the lowest level
        all_vars = [p, tvals, uvals, vvals, huvals]

        for i in range(len(all_vars)):
            all_vars[i] = all_vars[i][:-5]

        p, tvals, uvals, vvals, huvals = all_vars


        assert len(p) == len(huvals)

        tdvals = calc.dewpoint(calc.vapor_pressure(p * units.mbar, huvals).to(units.mbar))


        print(tvals, tdvals)
        # Calculate full parcel profile and add to plot as black line
        parcel_profile = calc.parcel_profile(p[::-1] * units.mbar, (tvals[-1] + temp_perturbation_degc) * units.degC, tdvals[-1]).to('degC')
        parcel_profile = parcel_profile[::-1]
        skew.plot(p, parcel_profile, 'k', linewidth=2)



        # Example of coloring area between profiles
        greater = tvals * units.degC >= parcel_profile
        skew.ax.fill_betweenx(p, tvals, parcel_profile, where=greater, facecolor='blue', alpha=0.4)
        skew.ax.fill_betweenx(p, tvals, parcel_profile, where=~greater, facecolor='red', alpha=0.4)



        skew.plot(p, tvals, "r")
        skew.plot(p, tdvals, "g")

        skew.plot_barbs(p, uvals, vvals)

        # Plot a zero degree isotherm
        l = skew.ax.axvline(0, color='c', linestyle='--', linewidth=2)


        # Add the relevant special lines
        skew.plot_dry_adiabats()
        skew.plot_moist_adiabats()
        skew.plot_mixing_lines()

        plt.title("{} (dT={})".format(the_date, temp_perturbation_degc))

        img_path = "{}_dT={}.png".format(the_date.strftime("%Y%m%d_%H%M%S"), temp_perturbation_degc)
        img_path = img_dir.joinpath(img_path)
        fig.savefig(str(img_path), bbox_inches="tight")

        plt.close(fig)
Exemple #22
0
def draw_sta_skewT(p=None,
                   T=None,
                   Td=None,
                   wind_speed=None,
                   wind_dir=None,
                   u=None,
                   v=None,
                   fcst_info=None,
                   output_dir=None):
    fig = plt.figure(figsize=(9, 9))
    skew = SkewT(fig, rotation=45)

    plt.rcParams['font.sans-serif'] = ['SimHei']  # 步骤一(替换sans-serif字体)
    plt.rcParams['axes.unicode_minus'] = False  # 步骤二(解决坐标轴负数的负号显示问题)

    # Plot the data using normal plotting functions, in this case using
    # log scaling in Y, as dictated by the typical meteorological plot.
    skew.plot(p, T, 'r')
    skew.plot(p, Td, 'g')
    skew.plot_barbs(p, u, v)
    skew.ax.set_ylim(1000, 100)
    skew.ax.set_xlim(-40, 60)

    # Calculate LCL height and plot as black dot. Because `p`'s first value is
    # ~1000 mb and its last value is ~250 mb, the `0` index is selected for
    # `p`, `T`, and `Td` to lift the parcel from the surface. If `p` was inverted,
    # i.e. start from low value, 250 mb, to a high value, 1000 mb, the `-1` index
    # should be selected.
    lcl_pressure, lcl_temperature = mpcalc.lcl(p[0], T[0], Td[0])
    skew.plot(lcl_pressure, lcl_temperature, 'ko', markerfacecolor='black')

    # Calculate full parcel profile and add to plot as black line
    prof = mpcalc.parcel_profile(p, T[0], Td[0]).to('degC')
    skew.plot(p, prof, 'k', linewidth=2)

    # Shade areas of CAPE and CIN
    skew.shade_cin(p, T, prof)
    skew.shade_cape(p, T, prof)

    # An example of a slanted line at constant T -- in this case the 0
    # isotherm
    skew.ax.axvline(0, color='c', linestyle='--', linewidth=2)

    # Add the relevant special lines
    skew.plot_dry_adiabats()
    skew.plot_moist_adiabats()
    skew.plot_mixing_lines()

    #forecast information
    bax = plt.axes([0.12, 0.88, .25, .07], facecolor='#FFFFFFCC')
    bax.axis('off')
    bax.axis([0, 10, 0, 10])

    initTime = pd.to_datetime(str(
        fcst_info['forecast_reference_time'].values)).replace(
            tzinfo=None).to_pydatetime()
    if (sys.platform[0:3] == 'lin'):
        locale.setlocale(locale.LC_CTYPE, 'zh_CN.utf8')
    if (sys.platform[0:3] == 'win'):
        locale.setlocale(locale.LC_CTYPE, 'chinese')
    plt.text(2.5, 7.5, '起报时间: ' + initTime.strftime("%Y年%m月%d日%H时"), size=11)
    plt.text(2.5,
             5.0,
             '[' + str(fcst_info.attrs['model']) + '] ' +
             str(int(fcst_info['forecast_period'].values[0])) + '小时预报探空',
             size=11)
    plt.text(2.5,
             2.5,
             '预报点: ' + str(fcst_info.attrs['points']['lon']) + ', ' +
             str(fcst_info.attrs['points']['lat']),
             size=11)
    plt.text(2.5, 0.5, 'www.nmc.cn', size=11)
    utl.add_logo_extra_in_axes(pos=[0.1, 0.88, .07, .07],
                               which='nmc',
                               size='Xlarge')

    # Show the plot
    if (output_dir != None):
        plt.savefig(
            output_dir + '时间剖面产品_起报时间_' +
            str(fcst_info['forecast_reference_time'].values)[0:13] + '_预报时效_' +
            str(int(fcst_info.attrs['forecast_period'].values)) + '.png',
            dpi=200,
            bbox_inches='tight')
    else:
        plt.show()
        T = df_selected_time['temperature'].values * units.degC
        Td = df_selected_time['dewpoint'].values * units.degC
        wind_speed = df_selected_time['speed'].values * units.knots
        wind_dir = df_selected_time['direction'].values * units.degrees
        u, v = mpcalc.wind_components(wind_speed, wind_dir)

        ###########################################
        # Create a new figure. The dimensions here give a good aspect ratio.

        fig = plt.figure(figsize=(9, 9))
        #add_metpy_logo(fig, 115, 100)
        skew = SkewT(fig, rotation=45)

        # Plot the data using normal plotting functions, in this case using
        # log scaling in Y, as dictated by the typical meteorological plot
        skew.plot(p, T, 'r')
        skew.plot(p, T, 'ro', markersize=8, fillstyle='none')
        skew.plot(p, Td, 'g', linestyle='--')
        skew.plot(p, Td, 'g^', markersize=8, fillstyle='none')

        skew.plot_barbs(p, u, v)
        skew.ax.set_ylim(1050, 100)
        skew.ax.set_xlim(-50, 60)

        # Calculate LCL height and plot as black dot
        lcl_pressure, lcl_temperature = mpcalc.lcl(p[0], T[0], Td[0])
        skew.plot(lcl_pressure, lcl_temperature, 'ko', markerfacecolor='black')

        #calculate potentional temperature
        #mpcalc.potential_temperature(p[0], T[0])
Exemple #24
0
                                  wspd=wspd,
                                  wdir=wdir,
                                  latitude=latitude,
                                  longitude=longitude,
                                  strictQC=True)

    #### Adding a Parcel Trace
    sfcpcl = params.parcelx(prof, flag=1)  # Surface Parcel
    #fcstpcl = params.parcelx( prof, flag=2 ) # Forecast Parcel
    mupcl = params.parcelx(prof, flag=3)  # Most-Unstable Parcel
    mlpcl = params.parcelx(prof, flag=4)  # 100 mb Mean Layer Parcel
    # Set the parcel trace to be plotted as the Most-Unstable parcel.
    pcl = mupcl

    # Temperature, dewpoint, virtual temperature, wetbulb, parcel profiles
    temperature_trace, = skew.plot(prof.pres, prof.tmpc, 'r',
                                   linewidth=2)  # temperature profile
    # annotate temperature in F at bottom of T profile
    temperatureF = skew.ax.text(prof.tmpc[0],
                                prof.pres[0] + 10,
                                utils.INT2STR(thermo.ctof(prof.tmpc[0])),
                                verticalalignment='top',
                                horizontalalignment='center',
                                size=7,
                                color=temperature_trace.get_color())
    vtemp_trace, = skew.plot(prof.pres, prof.vtmp, 'r',
                             linewidth=0.5)  # Virtual temperature profile
    wetbulb_trace, = skew.plot(prof.pres, prof.wetbulb,
                               'c-')  # wetbulb profile
    dewpoint_trace, = skew.plot(prof.pres, prof.dwpc, 'g',
                                linewidth=2)  # dewpoint profile
    # annotate dewpoint in F at bottom of dewpoint profile
Exemple #25
0
def core_ens(p, T, Td, u, v, p2, T2, Td2, **kwargs):
    #from IPython import embed; embed()
    T = T.to(units.K)
    Td = Td.to(units.K)

    Tmean = T.mean(axis=0)
    Tdmean = Td.mean(axis=0)
    pmean = p.mean(axis=0)
    umean, vmean = u.mean(axis=0), v.mean(axis=0)
    Tstd = np.std(T.data, axis=0) * units.K
    Tdstd = np.std(Td.data, axis=0) * units.K

    # Calculate the parcel profile.
    parcel_prof = mpcalc.parcel_profile(pmean, Tmean[0], Tdmean[0]).to('degC')

    # Create a new figure. The dimensions here give a good aspect ratio
    fig = plt.figure(figsize=(8, 8))
    skew = SkewT(fig, rotation=45)

    # Plot a zero degree isotherm
    skew.ax.axvline(0, color='k', linestyle='--', linewidth=1)

    # Add the relevant special lines
    skew.plot_dry_adiabats(lw=.5)
    skew.plot_moist_adiabats(lw=.5)
    skew.plot_mixing_lines(lw=.5)

    # Plot the data using normal plotting functions, in this case using
    # log scaling in Y, as dictated by the typical meteorological plot
    skew.shade_area(pmean,
                    Tmean - Tstd,
                    Tmean + Tstd,
                    color='r',
                    label='std$_{ens}$ mean$_{dom}$ T$_{fc}$')
    skew.shade_area(pmean,
                    Tdmean - Tdstd,
                    Tdmean + Tdstd,
                    color='g',
                    label='std$_{ens}$ mean$_{dom}$ Td$_{fc}$')
    #skew.plot(p, Tmean+np.std(T), '-', color='grey', lw=1, label='p.999(T)')
    skew.plot(pmean,
              Tmean,
              'r:',
              ms=3,
              lw=1,
              label='mean$_{ens, dom}$ T$_{fc}$')
    skew.plot(pmean,
              Tdmean,
              'g:',
              ms=3,
              lw=1,
              label='mean$_{ens, dom}$ Td$_{fc}$')
    skew.plot_barbs(pmean, umean, vmean)

    # Plot the parcel profile as a black line
    skew.plot(pmean, parcel_prof, 'k', linewidth=.5)

    # Shade areas of CAPE and CIN
    skew.shade_cin(pmean, Tmean, parcel_prof, alpha=0.2)
    skew.shade_cape(pmean, Tmean, parcel_prof, alpha=0.2)

    # nature
    skew.plot(p2,
              T2,
              'r.-',
              ms=5,
              lw=2,
              label='mean$_{ens, dom}$ T$_{nature}$')
    skew.plot(p2,
              Td2,
              'g.-',
              ms=5,
              lw=2,
              label='mean$_{ens, dom}$ Td$_{nature}$')

    skew.ax.set_ylim(1000, 180)
    skew.ax.set_xlim(-20, 40)

    plt.legend(loc='lower left')
    plt.title(kwargs.get('title'))
    fname = kwargs.get('saveto', 'profile.png')
    fig.savefig(fname)
    print(fname, 'saved.')
    plt.close()
from metpy.calc import get_wind_components, lcl, dry_lapse, parcel_profile
from metpy.plots import SkewT

# Parse the data
p, T, Td, direc, spd = np.loadtxt('../testdata/may3_sounding.txt',
        usecols=(0, 2, 3, 6, 7), unpack=True)
u,v = get_wind_components(spd, direc)

# Create a new figure. The dimensions here give a good aspect ratio
fig = plt.figure(figsize=(9, 9))
skew = SkewT(fig, rotation=45)

# Plot the data using normal plotting functions, in this case using
# log scaling in Y, as dictated by the typical meteorological plot
skew.plot(p, T, 'r')
skew.plot(p, Td, 'g')
skew.plot_barbs(p, u, v)
skew.ax.set_ylim(1000, 100)
skew.ax.set_xlim(-40, 60)

# Calculate LCL height and plot as black dot
l = lcl(p[0], C2K(T[0]), C2K(Td[0]))
skew.plot(l, K2C(dry_lapse(l, C2K(T[0]), p[0])), 'ko',
        markerfacecolor='black')

# Calculate full parcel profile and add to plot as black line
prof = K2C(parcel_profile(p, C2K(T[0]), C2K(Td[0])))
skew.plot(p, prof, 'k', linewidth=2)

# Example of coloring area between profiles
Exemple #27
0
        
        ###########################################
        # Create a new figure. The dimensions here give a good aspect ratio.
        fig = plt.figure(figsize=(28, 24))          
        #add_metpy_logo(fig, 115, 100)
        skew = SkewT(fig, rotation=45)
        
        skew.ax.set_title('skew T log p diagram\n', fontsize=30)            
        skew.ax.set_xlabel(r'temperature ($ \degree C$)', fontsize=24)
        skew.ax.set_ylabel(r'pressure ($ hPa $)', fontsize=24)
        

        # Plot the data using normal plotting functions, in this case using
        # log scaling in Y, as dictated by the typical meteorological plot
        #skew.plot(p, T, 'r')
        skew.plot(p, T, 'ro', markersize = 0, fillstyle='none', label='temperature')
        #skew.plot(p, Td, 'g', linestyle='--')
        skew.plot(p, Td, 'g^', markersize = 0, fillstyle='none', label='dew point temperature')
        #skew.plot_barbs(p, u, v)
        
        skew.ax.set_ylim(yylim[0], yylim[1])
        skew.ax.set_xlim(xxlim[0], xxlim[1])
        skew.ax.tick_params(axis="x", labelsize=14, pad=10, rotation=45, labelcolor='brown')
        skew.ax.tick_params(axis="y", labelsize=14, pad=0.5)
        
        # Calculate full parcel profile and add to plot as black line
        #prof_0 = mpcalc.parcel_profile(p, T[0], Td[0]).to('degC')
        #skew.plot(p, prof_0, 'k', linewidth=1.5)
        
        # Shade areas of CAPE and CIN
        '''
Exemple #28
0
#fig, ax = plt.subplots(figsize = (5,12))
#ax.plot(RH_RA[1:len(RH_RA)-1], z_RA[1:len(z_RA)-1], color = 'red', zorder = 5)
#ax.plot(RH_RS, z_RS, color = 'black')
#ax.set_title(Time_RA, fontsize = 16)
#ax.set_ylim(0,10000)
#ax.set_ylabel('Altitude [m]', fontsize = 16)
#ax.set_xlabel('RH [%]', fontsize = 16)
#ax.tick_params(labelsize = 16)

fig = plt.figure(figsize=(9, 9))
skew = SkewT(fig)

#########################################
##### A) SMN: Surface measurement
#########################################
skew.plot(pressure_SMN, temperature_SMN, 'ro', color='orange', label='surf T')
skew.plot(pressure_SMN,
          temperature_d_SMN,
          'bo',
          color='orange',
          label='surf Td')

##########################################
##### B) RS: RADIOSONDE
##########################################
# original RS data
skew.plot(p_RS_original, T_RS_original, color='red', linewidth=2, label='RS T')
skew.plot(p_RS_original,
          T_d_RS_original,
          color='red',
          linewidth=2,
Exemple #29
0
with UseSampleData():  # Only needed to use our local sample data
    # Download and parse the data
    dataset = get_upper_air_data(datetime(2013, 1, 20, 12), 'OUN')

p = dataset.variables['pressure'][:]
T = dataset.variables['temperature'][:]
Td = dataset.variables['dewpoint'][:]
u = dataset.variables['u_wind'][:]
v = dataset.variables['v_wind'][:]

###########################################
skew = SkewT()

# Plot the data using normal plotting functions, in this case using
# log scaling in Y, as dictated by the typical meteorological plot
skew.plot(p, T, 'r')
skew.plot(p, Td, 'g')
skew.plot_barbs(p, u, v)

# Add the relevant special lines
skew.plot_dry_adiabats()
skew.plot_moist_adiabats()
skew.plot_mixing_lines()
skew.ax.set_ylim(1000, 100)

###########################################

# Example of defining your own vertical barb spacing
skew = SkewT()

# Plot the data using normal plotting functions, in this case using
Exemple #30
0
def plot_upper_air(station='11035', date=False):
    '''
    -----------------------------
    Default use of plot_upper_air:

    This will plot a SkewT sounding for station '11035' (Wien Hohe Warte)
    plot_upper_air(station='11035', date=False)
    '''
    # sns.set(rc={'axes.facecolor':'#343837', 'figure.facecolor':'#343837',
    #  'grid.linestyle':'','axes.labelcolor':'#04d8b2','text.color':'#04d8b2',
    #  'xtick.color':'#04d8b2','ytick.color':'#04d8b2'})
    # Get time in UTC
    station = str(station)
    if date is False:
        now = datetime.utcnow()
        # If morning then 0z sounding, otherwise 12z
        if now.hour < 12:
            hour = 0
        else:
            hour = 12
        date = datetime(now.year, now.month, now.day, hour)
        datestr = date.strftime('%Hz %Y-%m-%d')
        print('{}'.format(date))
    else:
        year = int(input('Please specify the year: '))
        month = int(input('Please specify the month: '))
        day = int(input('Please specify the day: '))
        hour = int(input('Please specify the hour: '))
        if hour < 12:
            hour = 0
        else:
            hour = 12
        date = datetime(year, month, day, hour)
        datestr = date.strftime('%Hz %Y-%m-%d')
        print('You entered {}'.format(date))

    # This requests the data 11035 is
    df = WyomingUpperAir.request_data(date, station)

    # Create single variables wih the right units
    p = df['pressure'].values * units.hPa
    T = df['temperature'].values * units.degC
    Td = df['dewpoint'].values * units.degC
    wind_speed = df['speed'].values * units.knots
    wind_dir = df['direction'].values * units.degrees

    wind_speed_6k = df['speed'][df.height <= 6000].values * units.knots
    wind_dir_6k = df['direction'][df.height <= 6000].values * units.degrees

    u, v = mpcalc.get_wind_components(wind_speed, wind_dir)
    u6, v6 = mpcalc.get_wind_components(wind_speed_6k, wind_dir_6k)

    # Calculate the LCL
    lcl_pressure, lcl_temperature = mpcalc.lcl(p[0], T[0], Td[0])
    print(lcl_pressure, lcl_temperature)
    # Calculate the parcel profile.
    parcel_prof = mpcalc.parcel_profile(p, T[0], Td[0]).to('degC')
    cape, cin = mpcalc.cape_cin(p, T, Td, parcel_prof)

    #############################
    # Create a new figure. The dimensions here give a good aspect ratio
    fig = plt.figure(figsize=(9, 9))
    gs = gridspec.GridSpec(3, 3)
    skew = SkewT(fig, rotation=45, subplot=gs[:, :2])

    # Plot the data using normal plotting functions, in this case using
    # log scaling in Y, as dictated by the typical meteorological plot
    skew.plot(p, T, 'r')
    skew.plot(p, Td, 'g')
    skew.plot_barbs(p, u, v)
    skew.ax.set_ylim(1000, 100)
    skew.ax.set_xlim(-45, 40)

    # Plot LCL as black dot
    skew.plot(lcl_pressure, lcl_temperature, 'ko', markerfacecolor='black')

    # Plot the parcel profile as a black line
    skew.plot(p, parcel_prof, 'k', linewidth=2)

    # Shade areas of CAPE and CIN
    skew.shade_cin(p, T, parcel_prof)
    skew.shade_cape(p, T, parcel_prof)

    # Plot a zero degree isotherm
    skew.ax.axvline(0, color='c', linestyle='--', linewidth=2)
    skew.ax.set_title('Station: ' + str(station) + '\n' + datestr)  # set title
    skew.ax.set_xlabel('Temperature (C)')
    skew.ax.set_ylabel('Pressure (hPa)')

    # Add the relevant special lines
    skew.plot_dry_adiabats(linewidth=0.7)
    skew.plot_moist_adiabats(linewidth=0.7)
    skew.plot_mixing_lines(linewidth=0.7)

    # Create a hodograph
    # Create an inset axes object that is 40% width and height of the
    # figure and put it in the upper right hand corner.
    # ax_hod = inset_axes(skew.ax, '40%', '40%', loc=1)
    ax = fig.add_subplot(gs[0, -1])
    h = Hodograph(ax, component_range=60.)
    h.add_grid(increment=20)
    # Plot a line colored by windspeed
    h.plot_colormapped(u6, v6, wind_speed_6k)

    # add another subplot for the text of the indices
    # ax_t = fig.add_subplot(gs[1:,2])
    skew2 = SkewT(fig, rotation=0, subplot=gs[1:, 2])
    skew2.plot(p, T, 'r')
    skew2.plot(p, Td, 'g')
    # skew2.plot_barbs(p, u, v)
    skew2.ax.set_ylim(1000, 700)
    skew2.ax.set_xlim(-30, 10)

    # Show the plot
    plt.show()

    return cape
Exemple #31
0
        print "no good data lines. empty profile"
        continue

    prof = profile.create_profile(profile='default', pres=pres, hght=hght, tmpc=tmpc, 
                                    dwpc=dwpc, wspd=wspd, wdir=wdir, latitude=latitude, longitude=longitude, missing=-999., strictQC=True)

    #### Adding a Parcel Trace
    sfcpcl = params.parcelx( prof, flag=1 ) # Surface Parcel
    #fcstpcl = params.parcelx( prof, flag=2 ) # Forecast Parcel
    mupcl = params.parcelx( prof, flag=3 ) # Most-Unstable Parcel
    mlpcl = params.parcelx( prof, flag=4 ) # 100 mb Mean Layer Parcel
    # Set the parcel trace to be plotted as the Most-Unstable parcel.
    pcl = mupcl

    # Temperature, dewpoint, virtual temperature, wetbulb, parcel profiles
    temperature_trace, = skew.plot(prof.pres, prof.tmpc, 'r', linewidth=2) # temperature profile 
    # annotate temperature in F at bottom of T profile
    temperatureF = skew.ax.text(prof.tmpc[0], prof.pres[0]+10, utils.INT2STR(thermo.ctof(prof.tmpc[0])), 
            verticalalignment='top', horizontalalignment='center', size=7, color=temperature_trace.get_color())
    skew.plot(prof.pres, prof.vtmp, 'r', linewidth=0.5)                    # Virtual temperature profile
    skew.plot(prof.pres, prof.wetbulb, 'c-')                               # wetbulb profile
    dwpt_trace, = skew.plot(prof.pres, prof.dwpc, 'g', linewidth=2)        # dewpoint profile
    # annotate dewpoint in F at bottom of dewpoint profile
    dewpointF = skew.ax.text(prof.dwpc[0], prof.pres[0]+10, utils.INT2STR(thermo.ctof(prof.dwpc[0])), 
            verticalalignment='top', horizontalalignment='center', size=7, color=dwpt_trace.get_color())
    skew.plot(pcl.ptrace, pcl.ttrace, 'brown', linestyle="dashed" )        # parcel temperature trace 
    skew.ax.set_ylim(1050,100)
    skew.ax.set_xlim(-50,45)


    # Plot the effective inflow layer using purple horizontal lines
##########################################################################
#  Skew-T Plotting
# ------------------------
#
# Fiducial lines indicating dry adiabats, moist adiabats, and mixing ratio are
# useful when performing further analysis on the Skew-T diagram. Often the
# 0C isotherm is emphasized and areas of CAPE and CIN are shaded.

# Create a new figure. The dimensions here give a good aspect ratio
fig = plt.figure(figsize=(9, 9))
skew = SkewT(fig, rotation=30)

# Plot the data using normal plotting functions, in this case using
# log scaling in Y, as dictated by the typical meteorological plot
skew.plot(p, T, 'r')
skew.plot(p, Td, 'g')
skew.plot_barbs(p, u, v)
skew.ax.set_ylim(1000, 100)
skew.ax.set_xlim(-40, 60)
skew.ax.set_xlabel('Temperature [°C]')
skew.ax.set_ylabel('Pressure [hPa]')

# Plot LCL temperature as black dot
skew.plot(lcl_pressure, lcl_temperature, 'ko', markerfacecolor='black')

# Plot the parcel profile as a black line
skew.plot(p, parcel_prof, 'k', linewidth=2)

# Shade areas of CAPE and CIN
skew.shade_cin(p, T, parcel_prof)
Exemple #33
0
def cape(filelist,storm,track,show):
    #Sort filelist.
    filelist=np.sort(filelist)

    # Get sampling periods (this will be a dictionary). See the toolbox
    print('Retrieving sampling periods')
    sampleperiods=getsamplingperiods(filelist,3.)

    # Iterate over all sampling periods.
    for sampindex,periodskey in enumerate(sampleperiods):

        #Allocate starting (stdt) and ending date (endt). Remeber dt is the convetional short-name for date.
        stdt=periodskey
        endt=sampleperiods[periodskey]

        # Define sampling period string
        period=str(stdt.hour)+'_'+str(stdt.day)+'-'+str(endt.hour)+'_'+str(endt.day)

        # Create new-empty lists.
        lats=[]
        lons=[]
        xs=[]
        ys=[]
        capes=[]
        cins=[]
	
        distfig = plt.figure(figsize=(13, 9))
        ax=distfig.add_subplot(111)
        print('start filelist loop')
        # Iterate over all files.
        for filename in filelist:



            # Select end-name of file by inspecting filename string. Notice how filename can change how file is read.
            if 'radazm' in filename.split('/')[-1] or 'eol' in filename.split('/')[-1]:
                end='radazm'
            else:
                end='avp'
            # Obtain properties of file, i.e., launch time and location into a dictionary (dicc).
            dicc=findproperties(filename,end)

            # Condition to see if current file is in sampling period.
            # Notice how if structure is constructed, condition finds times outside of sampling period and
            # if found outside the sampling period, continue to next file.
            if dicc['Launch Time']<stdt or dicc['Launch Time'] > endt:
                continue

            nump=np.genfromtxt(filename,skip_header=16,skip_footer=0)
            temperature=clean1(nump[:,5])
            pressure=clean1(nump[:,4])
            Height=clean1(nump[:,13])
            if np.nanmax(Height)<3500:
                continue
            #Clean for cape
            RelH=clean1(nump[:,7])
            lon=clean1(nump[:,14])
            lat=clean1(nump[:,15])
            lon=clean1(lon)
            lat=clean1(lat)
            mlon=np.nanmean(lon)
            mlat=np.nanmean(lat)
            RH=RelH/100
            T,P,rh,dz=cleanforcape(temperature,pressure,RH,Height)

            #Metpy set-up
            T=np.flip(T,0)
            rh=np.flip(rh,0)
            p=np.flip(P,0)
            dz=np.flip(dz,0)
            p=p*units.hPa
            T=T*units.celsius


            mixing=rh*mpcalc.saturation_mixing_ratio(p,T)
            epsilon=0.6219800858985514
            Tv=mpcalc.virtual_temperature(T, mixing,
                                      molecular_weight_ratio=epsilon)
            dwpoint=mpcalc.dewpoint_rh(T, rh)

            blh_indx=np.where(dz<500)
            try:
                parcelprofile=mpcalc.parcel_profile(p,np.nanmean(T[blh_indx])*units.celsius,mpcalc.dewpoint_rh(np.nanmean(T[blh_indx])*units.celsius, np.nanmean(rh[blh_indx]))).to('degC')
                Tv_parcelprofile=mpcalc.virtual_temperature(parcelprofile, mixing,
                                          molecular_weight_ratio=epsilon)
                cape,cin=cape_cin(p,Tv,dwpoint,Tv_parcelprofile,dz,T)
            except:
                continue

            plotskewT=True
            if plotskewT==True:

                os.system('mkdir figs/skewt')
                fig = plt.figure(figsize=(9, 9))
                skew = SkewT(fig, rotation=45)
                skew.ax.set_ylim(1000, 100)
                skew.ax.set_xlim(-40, 60)

                skew.plot(p, dwpoint, 'g',label=r'$T_{dp}$')
                skew.plot(p, Tv, 'r',label=r'$T_v$')
                plt.text(-120,120,str(np.around(cape,2)),fontsize=14,fontweight='bold')

                # Plot the data using normal plotting functions, in this case using
                # log scaling in Y, as dictated by the typical meteorological plot
                skew.plot(p,Tv_parcelprofile,'k',label=r'$T_{v env}$')
                skew.shade_cin(p, T, parcelprofile,label='CIN')
                skew.shade_cape(p, Tv, Tv_parcelprofile,label='CAPE')
                skew.plot_dry_adiabats()
                skew.plot_moist_adiabats()

                plt.legend()
                plt.title(storm + ' on' + period,fontsize=14)
                plt.savefig('figs/skewt/'+storm+str(dicc['Launch Time'].time())+'.png')
                #plt.show()
                plt.close()

            r,theta=cart_to_cylindr(mlon,mlat,track,dicc['Launch Time'])
            if not(np.isnan(r)) and not(np.isnan(theta)) and not(np.isnan(cape.magnitude)):
                xs.append(r*np.cos(theta))
                ys.append(r*np.sin(theta))
                capes.append(cape.magnitude)
                cins.append(cin)


            cs=ax.scatter(xs,ys,c=np.asarray(capes),cmap='jet')
            for i,xi in enumerate(xs):
                ax.text(xi,ys[i]+10,str(np.around(capes[i],1)))
        plt.colorbar(cs)
        ax.scatter(0,0,marker='v',s=100,color='black')
        ax.grid()
        ax.set_xlabel('X distance [km]')
        ax.set_ylabel('Y distance [km]')
        ax.set_title('CAPE distribution for '+storm+' on '+period,fontsize=14)
        distfig.savefig('figs/cape'+storm+period+'.png')
        if show:
            plt.show()
Exemple #34
0
    p = df['pressure'].values * units.hPa
    T = df['temperature'].values * units.degC
    Td = df['dewpoint'].values * units.degC
    u = df['Uwind'].values * units.meter / (units.second)
    v = df['Vwind'].values * units.meter / (units.second)

    # lcl_pressure, lcl_temperature = mpcalc.lcl(p[0], T[0], Td[0])
    # parcel_prof = mpcalc.parcel_profile(p, T[0], Td[0]).to('degC')

    fig = plt.figure(figsize=(11, 8.5))
    skew = SkewT(fig, rotation=45)

    # Plot the data using normal plotting functions, in this case using
    # log scaling in Y, as dictated by the typical meteorological plot
    skew.plot(p, T, 'r', linewidth=3)
    skew.plot(p, Td, 'g', linewidth=3)
    skew.plot_barbs(p[::100], u[::100], v[::100])
    skew.ax.set_ylim(1020, 300)
    skew.ax.set_xlim(-20, 40)
    skew.ax.tick_params(labelsize=24.)
    skew.ax.set_xlabel('temperature ($\degree C$)',
                       linespacing=7,
                       fontsize=24.)
    skew.ax.set_ylabel('pressure ($hPa$)', linespacing=4, fontsize=24.)
    skew.ax.set_title('Skew-T Log-P Diagram' + '\n' + '$_{station:}$ $_{' +
                      station + '}$'
                      '   $_{local}$ $_{time:}$ $_{' + file[i][29:33] + '/' +
                      file[i][33:35] + '/' + file[i][35:37] + '}$' + ' $_{' +
                      file[i][37:39] + ':00}$',
                      verticalalignment='bottom',
Exemple #35
0
wind_speed = df['speed'].values * units.knots
wind_dir = df['direction'].values * units.degrees
u, v = mpcalc.get_wind_components(wind_speed, wind_dir)

###########################################

# Create a new figure. The dimensions here give a good aspect ratio
fig = plt.figure(figsize=(9, 9))
add_metpy_logo(fig, 115, 100)

# Grid for plots
skew = SkewT(fig, rotation=45)

# Plot the data using normal plotting functions, in this case using
# log scaling in Y, as dictated by the typical meteorological plot
skew.plot(p, T, 'r')
skew.plot(p, Td, 'g')
skew.plot_barbs(p, u, v)
skew.ax.set_ylim(1000, 100)

# Add the relevant special lines
skew.plot_dry_adiabats()
skew.plot_moist_adiabats()
skew.plot_mixing_lines()

# Good bounds for aspect ratio
skew.ax.set_xlim(-50, 60)

# Create a hodograph
ax_hod = inset_axes(skew.ax, '40%', '40%', loc=1)
h = Hodograph(ax_hod, component_range=80.)
Exemple #36
0
                    u, v = mpcalc.wind_components(wind_speed, wind_dir)

                    ###########################################
                    # Create a new figure. The dimensions here give a good aspect ratio.
                    fig = plt.figure(figsize=(28, 24))
                    #add_metpy_logo(fig, 115, 100)
                    skew = SkewT(fig, rotation=45)

                    skew.ax.set_title('skew T log p diagram\n', fontsize=30)
                    skew.ax.set_xlabel(r'temperature ($ \degree C$)',
                                       fontsize=24)
                    skew.ax.set_ylabel(r'pressure ($ hPa $)', fontsize=24)

                    # Plot the data using normal plotting functions, in this case using
                    # log scaling in Y, as dictated by the typical meteorological plot
                    skew.plot(p, T, 'r')
                    skew.plot(p,
                              T,
                              'ro',
                              markersize=8,
                              fillstyle='none',
                              label='temperature')
                    skew.plot(p, Td, 'g', linestyle='--')
                    skew.plot(p,
                              Td,
                              'g^',
                              markersize=8,
                              fillstyle='none',
                              label='dew point temperature')
                    skew.plot_barbs(p, u, v)
Exemple #37
0
class Window(QtGui.QMainWindow):
    r""" A mainwindow object for the GUI display. Inherits from QMainWindow."""

    def __init__(self):
        super(Window, self).__init__()
        self.interface()

    def interface(self):
        r""" Contains the main window interface generation functionality. Commented where needed."""

        # Get the screen width and height and set the main window to that size
        screen = QtGui.QDesktopWidget().screenGeometry()
        self.setGeometry(0, 0, 800, screen.height())
        self.setMaximumSize(QtCore.QSize(800, 2000))

        # Set the window title and icon
        self.setWindowTitle("WAVE: Weather Analysis and Visualization Environment")
        self.setWindowIcon(QtGui.QIcon('./img/wave_64px.png'))

        # Import the stylesheet for this window and set it to the window
        stylesheet = "css/MainWindow.css"
        with open(stylesheet, "r") as ssh:
            self.setStyleSheet(ssh.read())
        self.setAutoFillBackground(True)
        self.setBackgroundRole(QtGui.QPalette.Highlight)

        # Create actions for menus and toolbar
        exit_action = QtGui.QAction(QtGui.QIcon('./img/exit_64px.png'), 'Exit', self)
        exit_action.setShortcut('Ctrl+Q')
        exit_action.setStatusTip('Exit application')
        exit_action.triggered.connect(self.close)
        clear_action = QtGui.QAction(QtGui.QIcon('./img/clear_64px.png'), 'Clear the display', self)
        clear_action.setShortcut('Ctrl+C')
        clear_action.setStatusTip('Clear the display')
        clear_action.triggered.connect(self.clear_canvas)
        skewt_action = QtGui.QAction(QtGui.QIcon('./img/skewt_64px.png'), 'Open the skew-T dialog', self)
        skewt_action.setShortcut('Ctrl+S')
        skewt_action.setStatusTip('Open the skew-T dialog')
        skewt_action.triggered.connect(self.skewt_dialog)
        radar_action = QtGui.QAction(QtGui.QIcon('./img/radar_64px.png'), 'Radar', self)
        radar_action.setShortcut('Ctrl+R')
        radar_action.setStatusTip('Open Radar Dialog Box')
        radar_action.triggered.connect(self.radar_dialog)

        # Create the top menubar, setting native to false (for OS) and add actions to the menus
        menubar = self.menuBar()
        menubar.setNativeMenuBar(False)
        filemenu = menubar.addMenu('&File')
        editmenu = menubar.addMenu('&Edit')
        helpmenu = menubar.addMenu('&Help')
        filemenu.addAction(exit_action)

        # Create the toolbar, place it on the left of the GUI and add actions to toolbar
        left_tb = QtGui.QToolBar()
        self.addToolBar(QtCore.Qt.LeftToolBarArea, left_tb)
        left_tb.setMovable(False)
        left_tb.addAction(clear_action)
        left_tb.addAction(skewt_action)
        left_tb.addAction(radar_action)
        self.setIconSize(QtCore.QSize(30, 30))

        # Create the toolbar, place it on the left of the GUI and add actions to toolbar
        right_tb = QtGui.QToolBar()
        self.addToolBar(QtCore.Qt.RightToolBarArea, right_tb)
        right_tb.setMovable(False)
        right_tb.addAction(clear_action)
        right_tb.addAction(skewt_action)
        right_tb.addAction(radar_action)

        # Create the status bar with a default display
        self.statusBar().showMessage('Ready')

        # Figure and canvas widgets that display the figure in the GUI
        self.figure = plt.figure(facecolor='#2B2B2B')
        self.canvas = FigureCanvas(self.figure)

        # Add subclassed matplotlib navbar to GUI
        # spacer widgets for left and right of buttons
        left_spacer = QtGui.QWidget()
        left_spacer.setSizePolicy(QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Expanding)
        right_spacer = QtGui.QWidget()
        right_spacer.setSizePolicy(QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Expanding)
        self.mpltb = QtGui.QToolBar()
        self.mpltb.addWidget(left_spacer)
        self.mpltb.addWidget(MplToolbar(self.canvas, self))
        self.mpltb.addWidget(right_spacer)
        self.mpltb.setMovable(False)
        self.addToolBar(QtCore.Qt.TopToolBarArea, self.mpltb)

        # Set the figure as the central widget and show the GUI
        self.setCentralWidget(self.canvas)
        self.show()

    def skewt_dialog(self):
        r""" When the toolbar icon for the Skew-T dialog is clicked, this function is executed. Creates an instance of
        the SkewTDialog object which is the dialog box. If the submit button on the dialog is clicked, get the user
        inputted values and pass them into the sounding retrieval call (DataAccessor.get_sounding) to fetch the data.
        Finally, plot the returned data via self.plot.

        Args:
            None.
        Returns:
            None.
        Raises:
            None.

        """

        dialog = SkewTDialog()
        if dialog.exec_():
            source, lat, long = dialog.get_values()
            t, td, p, u, v, lat, long, time = DataAccessor.get_sounding(source, lat, long)
            self.plot(t, td, p, u, v, lat, long, time)

    def plot(self, t, td, p, u, v, lat, long, time):
        r"""Displays the Skew-T data on a matplotlib figure.

        Args:
            t (array-like): A list of temperature values.
            td (array-like): A list of dewpoint values.
            p (array-like): A list of pressure values.
            u (array-like): A list of u-wind component values.
            v (array-like): A list of v-wind component values.
            lat (string): A string containing the requested latitude value.
            long (string): A string containing the requested longitude value.
            time (string): A string containing the UTC time requested with seconds truncated.
        Returns:
            None.
        Raises:
            None.

        """

        # Create a new figure. The dimensions here give a good aspect ratio
        self.skew = SkewT(self.figure, rotation=40)

        # Plot the data using normal plotting functions, in this case using
        # log scaling in Y, as dictated by the typical meteorological plot
        self.skew.plot(p, t, 'r')
        self.skew.plot(p, td, 'g')
        self.skew.plot_barbs(p, u, v, barbcolor='#FF0000', flagcolor='#FF0000')
        self.skew.ax.set_ylim(1000, 100)
        self.skew.ax.set_xlim(-40, 60)

        # Axis colors
        self.skew.ax.tick_params(axis='x', colors='#A3A3A4')
        self.skew.ax.tick_params(axis='y', colors='#A3A3A4')

        # Calculate LCL height and plot as black dot
        l = lcl(p[0], t[0], td[0])
        lcl_temp = dry_lapse(concatenate((p[0], l)), t[0])[-1].to('degC')
        self.skew.plot(l, lcl_temp, 'ko', markerfacecolor='black')

        # Calculate full parcel profile and add to plot as black line
        prof = parcel_profile(p, t[0], td[0]).to('degC')
        self.skew.plot(p, prof, 'k', linewidth=2)

        # Color shade areas between profiles
        self.skew.ax.fill_betweenx(p, t, prof, where=t >= prof, facecolor='#5D8C53', alpha=0.7)
        self.skew.ax.fill_betweenx(p, t, prof, where=t < prof, facecolor='#CD6659', alpha=0.7)

        # Add the relevant special lines
        self.skew.plot_dry_adiabats()
        self.skew.plot_moist_adiabats()
        self.skew.plot_mixing_lines()

        # Set title
        deg = u'\N{DEGREE SIGN}'
        self.skew.ax.set_title('Sounding for ' + lat + deg + ', ' + long + deg + ' at ' + time + 'z', y=1.02,
                               color='#A3A3A4')

        # Discards old graph, works poorly though
        # skew.ax.hold(False)
        # Figure and canvas widgets that display the figure in the GUI

        # set canvas size to display Skew-T appropriately
        self.canvas.setMaximumSize(QtCore.QSize(800, 2000))
        # refresh canvas
        self.canvas.draw()

    def radar_dialog(self):
        r""" When the toolbar icon for the Skew-T dialog is clicked, this function is executed. Creates an instance of
        the SkewTDialog object which is the dialog box. If the submit button on the dialog is clicked, get the user
        inputted values and pass them into the sounding retrieval call (DataAccessor.get_sounding) to fetch the data.
        Finally, plot the returned data via self.plot.

        Args:
            None.
        Returns:
            None.
        Raises:
            None.

        """

        radar_dialog = RadarDialog()

        if radar_dialog.exec_():
            station, product = radar_dialog.get_radarvals()
            x, y, ref = DataAccessor.get_radar(station, product)
            self.plot_radar(x, y, ref)

    def plot_radar(self, x, y, ref):
        r"""Displays the Skew-T data on a matplotlib figure.

        Args:
            t (array-like): A list of temperature values.
            td (array-like): A list of dewpoint values.
            p (array-like): A list of pressure values.
            u (array-like): A list of u-wind component values.
            v (array-like): A list of v-wind component values.
            lat (string): A string containing the requested latitude value.
            long (string): A string containing the requested longitude value.
            time (string): A string containing the UTC time requested with seconds truncated.
        Returns:
            None.
        Raises:
            None.

        """

        self.ax = self.figure.add_subplot(111)
        self.ax.pcolormesh(x, y, ref)
        self.ax.set_aspect('equal', 'datalim')
        self.ax.set_xlim(-460, 460)
        self.ax.set_ylim(-460, 460)
        self.ax.tick_params(axis='x', colors='#A3A3A4')
        self.ax.tick_params(axis='y', colors='#A3A3A4')

        # set canvas size to display Skew-T appropriately
        self.canvas.setMaximumSize(QtCore.QSize(800, 2000))
        # refresh canvas
        self.canvas.draw()

    def clear_canvas(self):
        self.canvas.close()
        self.figure = plt.figure(facecolor='#2B2B2B')
        self.canvas = FigureCanvas(self.figure)
        self.setCentralWidget(self.canvas)
Exemple #38
0
    def skewt(self, ranges='Range', temp='Temperature', dewpoint=None, rel_hum='Relative Humidity',
              temp_units='K', wind=None, **kwargs):
        from metpy.plots import SkewT
        if not 'col' in kwargs.keys() and not 'row' in kwargs.keys():
            # get unused dimensions
            unused = list(self._obj[temp].dims)
            if ranges in unused:
                unused.remove(ranges)
            # convert range (m) to hectopascals
            hpascals = 1013.25 * np.exp(-self._obj.coords[ranges] / 7)
            # return hpascals
            #return hpascals
            # convert temperature from Kelvins to Celsius
            #tempC = self._obj[temp] - 273.15
            if temp_units == 'K':
                tempK = self._obj[temp].drop(unused)
                tempC = tempK - 273.15
            else:
                tempC = self._obj[temp].drop(unused)
                tempK = tempC + 273.15

            if dewpoint is None:
                # estimate dewpoint from relative humidity
                dewpoints = tempK - ((100 - self._obj[rel_hum].drop(unused)) / 5) - 273.15
            else:
                dewpoints = self._obj[dewpoint].drop(unused)

            skew = SkewT()
            #return tempC
            skew.plot(hpascals, tempC, 'r')
            skew.plot(hpascals, dewpoints, 'g')
            skew.plot_dry_adiabats()
            skew.plot_moist_adiabats()
            if not wind is None:
                u = self._obj[wind].sel(Component='x').drop(unused)
                v = self._obj[wind].sel(Component='y').drop(unused)
                skew.plot_barbs(hpascals, u, v, xloc=.9)
            # skew.plot_mixing_lines()
            # skew.ax.set_ylim(1100, 100)
        else:
            if not wind is None:
                skewtdat = xr.concat([self._obj['Temperature'], self._obj['Relative Humidity'],
                                      self._obj[wind].sel(Component='x').drop('Component'),
                                      self._obj[wind].sel(Component='y').drop('Component')],
                                     'measure')
                skewtdat.coords['measure'] = ['Temperature', 'Relative Humidity', 'windx', 'windy']
            else:
                skewtdat = xr.concat([self._obj['Temperature'], self._obj['Relative Humidity']], 'measure')
                skewtdat.coords['measure'] = ['Temperature', 'Relative Humidity']

            # skewtdat
            sk1 = xr.plot.FacetGrid(skewtdat, **kwargs)
            #return sk1
            # need to make the subplot tuples

            for ax in sk1.axes.flat:
                ax.axis('off')

            #return sk1.axes.flat
            #return len(sk1.axes.flat)
            splots = range(len(sk1.axes.flat))
            #return splots
            splot_dims = sk1.axes.shape
            splot_tuples = []
            for i in splots:
                splot_tuples.append((splot_dims[0], splot_dims[1], i + 1))

            if not wind is None:
                sk1.map(rasp.skewt, [0, 1, 2, 3], splots=splot_tuples, ranges=skewtdat.coords['Range'].values)
            else:
                sk1.map(rasp.skewt, [0, 1], splots=splot_tuples, ranges=skewtdat.coords['Range'].values)
# Create a new figure. The dimensions here give a good aspect ratio
fig = plt.figure(figsize=(9, 9))
skew = SkewT(fig, rotation=30)

# Plot the data using normal plotting functions, in this case using
# log scaling in Y, as dictated by the typical meteorological plot
#skew.plot(p, T, 'r')
#skew.plot(p, Td, 'g')
#skew.plot_barbs(p, u, v)
skew.ax.set_ylim(1000, 100)
skew.ax.set_xlim(-40, 60)

# Plot LCL temperature as black dot
skew.plot(lcl_pressure,
          lcl_temperature,
          'ko',
          markerfacecolor='black',
          alpha=0)  #alpha = 0 make dot transparents

## Plot the parcel profile as a black line
#skew.plot(p, parcel_prof, 'k', linewidth=2)
#
## Shade areas of CAPE and CIN
##skew.shade_cin(p, T, parcel_prof, Td)
#skew.shade_cape(p, T, parcel_prof)
#
## Plot a zero degree isotherm
#skew.ax.axvline(0, color='c', linestyle='--', linewidth=2)

# Add the relevant special lines
skew.plot_dry_adiabats()
    'size': 10,
}
font_title = {
    'family': 'monospace',
    'color': 'black',
    'weight': 'normal',
    'size': 20,
}
font_axis = {
    'family': 'monospace',
    'color': 'black',
    'weight': 'normal',
    'size': 10,
}

skew.plot(p_year1, T_year1, 'k', linewidth=2)
skew.plot(pd_year1, Td_year1, 'k-.', alpha=0.8)
skew.plot(p, Temp_y1_to_y2, 'r', linewidth=2)
skew.plot(p, Td_y1_to_y2, 'r-.', alpha=0.8)
skew.plot(p, T_min, 'r:', alpha=0.8)
skew.plot(p, T_max, 'r:', alpha=0.8)

skew.ax.set_ylim(1000, 100)
skew.ax.set_xlim(-30, 60)

if stationid == "FIM00002963" or stationid == "FIM00002836":
    title = station + " " + time + "UTC month=" + month + " (NOAA)"
else:
    title = stationid + " " + time + "UTC month=" + month + " (NOAA)"
plt.title(title, fontdict=font_title)
plt.xlabel("T (C)", fontdict=font_axis)
Exemple #41
0
T = data['temperature']
Td = data['dewpoint']
u = data['u_wind']
v = data['v_wind']

# The code below makes a basic skew-T plot using the MetPy plot module that contains a SkewT class.

# Change default to be better for skew-T
fig = plt.figure(figsize=(9, 11))

# Initiate the skew-T plot type from MetPy class loaded earlier
skew = SkewT(fig, rotation=45)

# Plot the data using normal plotting functions, in this case using
# log scaling in Y, as dictated by the typical meteorological plot
skew.plot(p, T, 'r')
skew.plot(p, Td, 'b')
skew.plot_barbs(p[::3], u[::3], v[::3], y_clip_radius=0.03, flip_barb=True)

# Set some appropriate axes limits for x and y
skew.ax.set_xlim(-40, 40)
skew.ax.set_ylim(860, 100)

# Add the relevant special lines to plot throughout the figure
skew.plot_dry_adiabats(t0=np.arange(233, 533, 10) * units.K,
                       alpha=0.25,
                       color='orangered')
skew.plot_moist_adiabats(t0=np.arange(233, 400, 5) * units.K,
                         alpha=0.25,
                         color='tab:green')
skew.plot_mixing_lines(p=np.arange(1000, 99, -20) * units.hPa,
Exemple #42
0
# Convert wind speed and direction to components
from metpy.calc import get_wind_components
u, v = get_wind_components(spd, direc)

################## PLOTTING ON A SKEW-T logP ######################
import matplotlib.pyplot as plt
from metpy.plots import SkewT

# create a new figure. The dimensions here gove a good aspect ratio
fig = plt.figure(figsize=(7, 9))
skew = SkewT(fig)              # passing the figure, use skewT

# Plot the data using normal plotting functions, in this case using
# log scaling in Y, as dictated by the typical meteorological plot
skew.plot(p, T, 'r')           # pressure and temperature in red
skew.plot(p, Td, 'g')
skew.plot_barbs(p, u, v)
skew.ax.set_ylim(1000, 100)    # Y limits from 1000 in the botton to 100 millibars to the top
skew.ax.set_xlim(-40, 60)      # X limits

# Add the relevant special lines\n",
skew.plot_dry_adiabats()
skew.plot_moist_adiabats()
skew.plot_mixing_lines()

plt.show()

# Calculate LCL height and plot as black dot\n",
from metpy.calc import lcl, dry_lapse
from metpy.units import units, concatenate
Exemple #43
0
    for i in range(0, 6):
        lat = startlat + lat_delts[i]
        sound_lats.append(lat)
    print(sound_lats)
    for i in range(1, r):
        soundlat = sound_lats[0]
        soundlon = 360 - (startlon + (londelt * i))
        sound_temps = data["temperature"].interp(lat=soundlat, lon=soundlon) - 273.15

        sound_rh = data["rh"].interp(lat=soundlat, lon=soundlon)
        sound_dp = mpcalc.dewpoint_from_relative_humidity(
            sound_temps.data * units.degC, sound_rh.data * units.percent
        )

        skew = SkewT(fig=fig, rect=(0.75 - (0.15 * i), 0.2, 0.15, 0.1))
        skew.plot(sound_pres, sound_dp, "g", linewidth=3)
        skew.plot(sound_pres, sound_temps, "r", linewidth=3)
        skew.ax.axvline(0, color="purple", linestyle="--", linewidth=3)
        skew.ax.set_ylim((1000, ptop))
        skew.ax.axis("off")

    for i in range(0, r):
        soundlat = sound_lats[1]
        soundlon = 360 - (startlon + (londelt * i))
        sound_temps = data["temperature"].interp(lat=soundlat, lon=soundlon) - 273.15

        sound_rh = data["rh"].interp(lat=soundlat, lon=soundlon)
        sound_dp = mpcalc.dewpoint_from_relative_humidity(
            sound_temps.data * units.degC, sound_rh.data * units.percent
        )
 u, v = mpcalc.wind_components(wind_speed, wind_dir)
 
 # Create a new figure. The dimensions here give a good aspect ratio.
 fig = plt.figure(figsize=(15, 20))          
 #add_metpy_logo(fig, 115, 100)
 skew = SkewT(fig, rotation=45)
 
 skew.ax.set_title('skew T log p diagram\n', fontsize=24)            
 skew.ax.set_xlabel('temperature ($ \degree C$)', fontsize=18)
 skew.ax.set_ylabel('pressure ($ hPa $)', fontsize=18)
 
 # Plot the data using normal plotting functions, in this case using
 # log scaling in Y, as dictated by the typical meteorological plot
 #skew.plot(p, T, 'r')
 #skew.plot(p, T, 'ro', markersize = 8, fillstyle='none', label='temperature')
 skew.plot(p, T, 'ro', markersize = 0.1, fillstyle='none')
 
 #skew.plot(p, Td, 'g', linestyle='--')
 #skew.plot(p, Td, 'g^', markersize = 8, fillstyle='none', label='dew point temperature')
 
 #skew.plot_barbs(p, u, v)
 skew.ax.set_ylim(1050, 100)
 skew.ax.set_xlim(-50, 60)
 #skew.ax.set_xticklabels('xtick', rotation=45, fontsize=14)
 skew.ax.tick_params(axis="x", labelsize=14, pad=10, rotation=45, labelcolor='orange')
 skew.ax.tick_params(axis="y", labelsize=14, pad=0.5)
 
 # Calculate full parcel profile and add to plot as black line
 #prof_0 = mpcalc.parcel_profile(p, T[0], Td[0]).to('degC')
 #skew.plot(p, prof_0, 'k', linewidth=1.5)
 
Exemple #45
0
#
# This code below is taken from Skew-T_Layout.py from the metpy examples
#
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

# Create a new figure. The dimensions here give a good aspect ratio
fig = plt.figure(figsize=(11, 9))
add_metpy_logo(fig, 750, 80, size='large')

# Grid for plots
gs = gridspec.GridSpec(3, 3)
skew = SkewT(fig, rotation=45, subplot=gs[:, :2])

# Plot the data using normal plotting functions, in this case using
# log scaling in Y, as dictated by the typical meteorological plot
skew.plot(pressure, temperature, 'r')
skew.plot(pressure, dewpoint, 'g')
skew.plot_barbs(pressure, u_wind, v_wind)
skew.ax.set_ylim(1000, 100)

# Add the relevant special lines
skew.plot_dry_adiabats()
skew.plot_moist_adiabats()
skew.plot_mixing_lines()

# Good bounds for aspect ratio
skew.ax.set_xlim(-40, 60)

# Create a hodograph
ax = fig.add_subplot(gs[0, -1])
h = Hodograph(ax, component_range=60.)