Exemple #1
0
def map_eval(eval_file, token_length, tokenizer, device, model, label_list):
    model.eval()
    datasets, labels = get_datasets(eval_file)
    total_batches = 0
    total_avp = 0.0
    total_mrr = 0.0
    # scores, labels = [], []
    for k, dataset in tqdm(datasets.items(), desc="Eval datasets"):
        examples = []
        for i, data in enumerate(dataset):
            examples.append(InputExample(i, data[0], data[1], '0'))
        eval_features = convert_examples_to_features(examples, label_list,
                                                     token_length, tokenizer)
        all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                     dtype=torch.long).to(device)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features],
                                      dtype=torch.long).to(device)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features],
                                       dtype=torch.long).to(device)
        # all_label_ids = torch.tensor(
        #   [f.label_id for f in eval_features], dtype=torch.long).to(device)
        x_input_ids = torch.tensor([f.input_ids_x for f in eval_features],
                                   dtype=torch.long).to(device)
        x_input_mask = torch.tensor([f.input_mask_x for f in eval_features],
                                    dtype=torch.long).to(device)
        x_segment_ids = torch.tensor([f.segment_ids_x for f in eval_features],
                                     dtype=torch.long).to(device)
        y_input_ids = torch.tensor([f.input_ids_y for f in eval_features],
                                   dtype=torch.long).to(device)
        y_input_mask = torch.tensor([f.input_mask_y for f in eval_features],
                                    dtype=torch.long).to(device)
        y_segment_ids = torch.tensor([f.segment_ids_y for f in eval_features],
                                     dtype=torch.long).to(device)
        with torch.no_grad():
            logits = model(x_input_ids, x_input_mask, x_segment_ids,
                           y_input_ids, y_input_mask, y_segment_ids,
                           all_input_ids, all_segment_ids, all_input_mask)
        score = F.softmax(logits, dim=1)[:, 1].cpu().numpy()
        label = np.array(list(map(int, labels[k])))
        # print(score, label)
        # scores.append(score)
        #      labels.append(label)
        total_avp += mean_average_precision(label, score)
        total_mrr += mean_reciprocal_rank(label, score)
        total_batches += 1
    mAP = total_avp / total_batches
    mRR = total_mrr / total_batches
    logger.info("map is : {}, mrr is : {}".format(mAP, mRR))
    data = {'map': mAP, 'mrr': mRR}
    with open('./result.json', 'w', encoding='utf-8') as f:
        json.dump(data, f)
def evaluate(args,
             model,
             tokenizer,
             processor,
             eval_dataset,
             matched_questions_indexs,
             prefix=""):
    results = {}
    if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
        os.makedirs(args.output_dir)
    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
    # multi-gpu eval
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    eval_sampler = SequentialSampler(eval_dataset)
    eval_dataloader = DataLoader(eval_dataset,
                                 sampler=eval_sampler,
                                 batch_size=args.eval_batch_size)
    # Eval!
    logger.info("  Num examples = %d", len(eval_dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)
    epoch_iterator = tqdm(eval_dataloader,
                          desc="Eval_Iteration",
                          disable=args.local_rank not in [-1, 0])

    eval_original_dataset, _ = load_and_cache_examples(
        args, args.task_name, tokenizer, processor, data_type='eval_original')
    eval_original_sampler = SequentialSampler(eval_original_dataset)
    eval_original_dataloader = DataLoader(eval_original_dataset,
                                          sampler=eval_original_sampler,
                                          batch_size=args.eval_batch_size)
    original_iterator = tqdm(eval_original_dataloader,
                             desc="Original_Iteration",
                             disable=args.local_rank not in [-1, 0])
    original_embeddings = []
    eval_question_embeddings = []
    for step, batch in enumerate(original_iterator):
        model.eval()
        batch = tuple(t.to(args.device) for t in batch)
        with torch.no_grad():
            original_inputs = {
                "input_ids": batch[0],
                "attention_mask": batch[1],
                "token_type_ids": batch[2]
            }
            original_outputs = model(**original_inputs)[0].mean(1)
            original_embeddings.append(original_outputs)
    original_embeddings = torch.cat(
        [embed.cpu().data for embed in original_embeddings]).numpy()
    for step, batch in enumerate(epoch_iterator):
        model.eval()
        batch = tuple(t.to(args.device) for t in batch)
        with torch.no_grad():
            eval_question_inputs = {
                "input_ids": batch[0],
                "attention_mask": batch[1],
                "token_type_ids": batch[2]
            }
            eval_questions_outputs = model(**eval_question_inputs)[0].mean(1)
            eval_question_embeddings.append(eval_questions_outputs)
    eval_question_embeddings = torch.cat(
        [o.cpu().data for o in eval_question_embeddings]).numpy()

    scores = cosine_similarity(eval_question_embeddings, original_embeddings)
    sorted_indices = scores.argsort()[:, ::-1]
    mmr = mean_reciprocal_rank(matched_questions_indexs == sorted_indices)
    map = mean_average_precision(matched_questions_indexs == sorted_indices)
    print("mean reciprocal rank: {}".format(mmr))
    print("mean average precision: {}".format(map))
    results['mmr'] = mmr
    results['map'] = map

    output_eval_file = os.path.join(args.output_dir, prefix,
                                    "eval_results.txt")
    with open(output_eval_file, "w") as writer:
        logger.info("***** Eval results *****")
        for key, value in results.items():
            logger.info("  %s = %s", key, str(value))
            writer.write("%s = %s\n" % (key, value))

    return results
Exemple #3
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--train_file",
                        default='../data/right_samples.csv',
                        type=str,
                        required=False,
                        help="training file")
    parser.add_argument("--evaluate_file",
                        default='../data/eval_touzi.xlsx',
                        type=str,
                        required=False,
                        help="training file")
    parser.add_argument("--do_evaluate",
                        action="store_true",
                        help="Whether to run evaluate.")
    parser.add_argument("--do_predict",
                        default=True,
                        action="store_true",
                        help="Whether to run predict.")

    parser.add_argument("--batch_size",
                        default=16,
                        type=int,
                        required=False,
                        help="batch size for train and eval")
    args = parser.parse_args()

    if not os.path.exists("embeddings.pkl"):
        train_df = pd.read_csv(args.train_file, sep='\t')
        candidate_title = train_df['best_title'].tolist()
        candidate_reply = train_df["reply"].tolist()

        titels = []
        for title in tqdm(candidate_title, desc='对原问题进行分词ing'):
            titels.append(seg.cut(title))
        embeddings = []
        for i in trange(0, len(titels), 16, desc='获取ELMo的句子表示'):
            mini_embeddings = e.sents2elmo(titels[i:min(len(titels), i + 16)])
            for mini_embedding in mini_embeddings:
                # 获取句子向量,对词取平均
                embeddings.append(np.mean(mini_embedding, axis=0))
            if i == 0:
                print(len(embeddings))
                print(embeddings[0].shape)
        print("原始问题句子向量表示获取完毕,保存ing")
        with open("embeddings.pkl", 'wb') as fout:
            pickle.dump([candidate_title, candidate_reply, embeddings], fout)
    else:
        with open("embeddings.pkl", 'rb') as fint:
            candidate_title, candidate_reply, embeddings = pickle.load(fint)

    if args.do_evaluate:
        evulate_df = pd.read_excel(args.evaluate_file, '投资知道')
        # code.interact(local=locals())
        evulate_df = evulate_df[['问题', '匹配问题']]
        evulate_df = evulate_df[evulate_df['问题'].notna()]
        evulate_df = evulate_df[evulate_df['匹配问题'].notna()]

        questions = evulate_df['问题'].tolist()
        matched_questions = evulate_df['匹配问题'].tolist()
        matched_questions_indexs = []
        for k, q in enumerate(matched_questions):
            flag = False
            for i, _q in enumerate(candidate_title):
                if q == _q:
                    matched_questions_indexs.append([i])
                    flag = True
                    break
            if not flag:
                matched_questions_indexs.append([-1])

        matched_questions_indexs = np.asarray(matched_questions_indexs)
        # print("size of matched_questions_index:{}".format(matched_questions_indexs.shape))

        questions = [seg.cut(question.strip()) for question in questions]
        question_embedding = [
            np.mean(emb, 0) for emb in e.sents2elmo(questions)
        ]
        scores = cosine_similarity(question_embedding, embeddings)
        # print("scores shape : {}".format(scores.shape))
        sorted_indices = scores.argsort()[:, ::-1]
        # code.interact(local=locals())

        mmr = mean_reciprocal_rank(sorted_indices == matched_questions_indexs)
        map = mean_average_precision(
            sorted_indices == matched_questions_indexs)
        logger.info("mean reciprocal rank: {}".format(mmr))
        logger.info("mean average precision: {}".format(map))

    if args.do_predict:
        while True:
            title = input("你的问题是?\n")
            if len(str(title).strip()) == 0:
                continue
            title = [seg.cut(str(title).strip())]
            title_embedding = np.mean(e.sents2elmo(title)[0], 0).reshape(1, -1)
            scores = cosine_similarity(title_embedding, embeddings)[0]
            top5_indices = scores.argsort()[-5:][::-1]
            for index in top5_indices:
                print("可能的答案,参考问题:" + candidate_title[index] + "\t答案:" +
                      candidate_reply[index] + "\t得分:" + str(scores[index]))
Exemple #4
0
def main():
    parser = argparse.ArgumentParser()

    # Required parameters
    parser.add_argument(
        "--data_dir",
        default="../data/right_samples.csv",
        type=str,
        required=False,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task.",
    )
    parser.add_argument(
        "--evaluate_dir",
        default="../data/eval_touzi.xlsx",
        type=str,
        required=False,
        help=
        "The evaluate data dir. Should contain the .tsv files (or other data files) for the task.",
    )

    parser.add_argument(
        "--model_type",
        default="bert",
        type=str,
        required=False,
        help="Model type selected in the list:",
    )
    parser.add_argument(
        "--model_name_or_path",
        default='D:\\NLP\\my-wholes-models\\chinese_wwm_pytorch\\',
        type=str,
        required=False,
        help="Path to pre-trained model or shortcut name selected in the list",
    )
    parser.add_argument(
        "--output_type",
        default="avg",
        type=str,
        required=False,
        choices=["pooled", "avg"],
        help="the type of choice output vector",
    )

    parser.add_argument(
        "--task_name",
        default="faq",
        type=str,
        required=False,
        help="The name of the task to train selected in the list: " +
        ", ".join(processors.keys()),
    )

    # Other parameters
    parser.add_argument(
        "--config_name",
        default="",
        type=str,
        help="Pretrained config name or path if not the same as model_name")
    parser.add_argument(
        "--tokenizer_name",
        default="",
        type=str,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help=
        "Where do you want to store the pre-trained models downloaded from s3",
    )
    parser.add_argument(
        "--max_seq_length",
        default=256,
        type=int,
        help=
        "The maximum total input sequence length after tokenization. Sequences longer "
        "than this will be truncated, sequences shorter will be padded.",
    )
    parser.add_argument("--do_predict",
                        default=True,
                        action="store_true",
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action="store_true",
                        help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--do_lower_case",
        default=True,
        action="store_true",
        help="Set this flag if you are using an uncased model.")

    parser.add_argument("--per_gpu_train_batch_size",
                        default=8,
                        type=int,
                        help="Batch size per GPU/CPU for training.")
    parser.add_argument("--per_gpu_eval_batch_size",
                        default=8,
                        type=int,
                        help="Batch size per GPU/CPU for evaluation.")
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--weight_decay",
                        default=0.0,
                        type=float,
                        help="Weight decay if we apply some.")
    parser.add_argument("--adam_epsilon",
                        default=1e-8,
                        type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm",
                        default=1.0,
                        type=float,
                        help="Max gradient norm.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help=
        "If > 0: set total number of training steps to perform. Override num_train_epochs.",
    )
    parser.add_argument("--warmup_steps",
                        default=0,
                        type=int,
                        help="Linear warmup over warmup_steps.")

    parser.add_argument("--logging_steps",
                        type=int,
                        default=1000,
                        help="Log every X updates steps.")
    parser.add_argument("--save_steps",
                        type=int,
                        default=5000,
                        help="Save checkpoint every X updates steps.")
    parser.add_argument(
        "--eval_all_checkpoints",
        action="store_true",
        help=
        "Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
    )
    parser.add_argument("--no_cuda",
                        action="store_true",
                        help="Avoid using CUDA when available")
    parser.add_argument(
        "--overwrite_cache",
        action="store_true",
        help="Overwrite the cached training and evaluation sets")
    parser.add_argument("--seed",
                        type=int,
                        default=42,
                        help="random seed for initialization")

    parser.add_argument(
        "--fp16",
        action="store_true",
        help=
        "Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
    )
    parser.add_argument(
        "--fp16_opt_level",
        type=str,
        default="O1",
        help=
        "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html",
    )
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="For distributed training: local_rank")
    parser.add_argument("--server_ip",
                        type=str,
                        default="",
                        help="For distant debugging.")
    parser.add_argument("--server_port",
                        type=str,
                        default="",
                        help="For distant debugging.")
    args = parser.parse_args()

    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd

        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port),
                            redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend="nccl")
        args.n_gpu = 1
    args.device = device
    # Setup logging
    # set_log(logger)
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        filename="BERT.log",
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank,
        device,
        args.n_gpu,
        bool(args.local_rank != -1),
        args.fp16,
    )

    set_seed(args)
    args.task_name = args.task_name.lower()
    args.model_type = args.model_type.lower()

    config_class, model_class, tokenizer_class = MODEL_CLASS[args.model_type]
    config = config_class.from_pretrained(
        args.config_name if args.config_name else args.model_name_or_path,
        finetuning_task=args.task_name,
        cache_dir=args.cache_dir if args.cache_dir else "./cache")
    tokenizer = tokenizer_class.from_pretrained(
        args.tokenizer_name
        if args.tokenizer_name else args.model_name_or_path,
        cache_dir=args.cache_dir if args.cache_dir else "./cache")
    model = model_class.from_pretrained(
        args.model_name_or_path,
        from_tf=bool('.ckpt' in args.model_name_or_path),
        config=config,
        cache_dir=args.cache_dir if args.cache_dir else "./cache")
    model = model.to(device)

    if not os.path.exists("embeddings.pkl"):
        eval_dataset, candidate_title, candidate_reply = load_examples(
            args, tokenizer)
        outputs = evaluate(args, model, eval_dataset)
        candidate_embeddings = torch.cat([o.cpu().data
                                          for o in outputs]).numpy()
        torch.save([candidate_title, candidate_reply, candidate_embeddings],
                   "embeddings.pkl")
    else:
        candidate_title, candidate_reply, candidate_embeddings = torch.load(
            "embeddings.pkl")

    if args.do_eval:
        evulate_df = pd.read_excel(args.evaluate_dir, '投资知道')
        evulate_df = evulate_df[['问题', '匹配问题']]
        evulate_df = evulate_df[evulate_df['问题'].notna()]
        evulate_df = evulate_df[evulate_df['匹配问题'].notna()]
        questions = evulate_df['问题'].tolist()
        matched_questions = evulate_df['匹配问题'].tolist()
        matched_questions_indexs = []
        # 找出匹配问题对应的index
        for k, q in enumerate(matched_questions):
            flag = False
            for i, _q in enumerate(candidate_title):
                if q == _q:
                    matched_questions_indexs.append([i])
                    flag = True
                    break
            if not flag:
                matched_questions_indexs.append([-1])
        matched_questions_indexs = np.asarray(matched_questions_indexs)

        examples = [
            InputExample(guid='eva_' + str(idx),
                         text_a=title,
                         text_b=None,
                         label=1) for idx, title in enumerate(questions)
        ]
        dataset = from_examples2dataset(args, examples, tokenizer)
        outputs = evaluate(args, model, dataset)
        question_embedding = torch.cat([o.cpu().data for o in outputs]).numpy()

        scores = cosine_similarity(question_embedding, candidate_embeddings)
        sorted_indices = scores.argsort()[:, ::-1]
        mmr = mean_reciprocal_rank(matched_questions_indexs == sorted_indices)
        map = mean_average_precision(
            matched_questions_indexs == sorted_indices)
        print("mean reciprocal rank: {}".format(mmr))
        print("mean average precision: {}".format(map))
        logger.info("====" * 100)
        logger.info("mean reciprocal rank: {}".format(mmr))
        logger.info("mean average precision: {}".format(map))
        logger.info("====" * 100)

    if args.do_predict:
        while True:
            question = input("你的问题是?\n")
            if len(str(question)) == 0:
                continue

            examples = [
                InputExample(guid=0, text_a=question, text_b=None, label=1)
            ]
            dataset = from_examples2dataset(args, examples, tokenizer)
            outputs = evaluate(args, model, dataset)

            question_embedding = torch.cat([o.cpu().data
                                            for o in outputs]).numpy()
            scores = cosine_similarity(question_embedding,
                                       candidate_embeddings)[0]
            top5 = scores.argsort()[-5:][::-1]
            for index in top5:
                print("可能得答案,参考问题为:{},答案:{},得分:{}".format(
                    candidate_title[index], candidate_reply[index],
                    str(scores[index])))
                print()
                        if j == 0:
                            core_entities.append(entity)
            catcallall = " ".join([pgTitle, secTitle, caption, " ".join(headers)])
            remained_core_entities = [z for z in core_entities if z in all_entity_set]
            if len(remained_core_entities) < 5:
                tables_ignored += 1
                continue
            seed = remained_core_entities[:1]

            # pdb.set_trace()
            # A1 = eva.find_core_candidates_cat(seed, k)
            # A1 = set()
            # B = eva.find_core_candidates_c(seed, re.escape(catcallall), k)
            # C = eva.find_core_candidates_e(seed, k)
            # pdb.set_trace()
            pall, pee, pce, ple, cand_e, cand_c = eva.rank_core_candidates(seed, re.escape(caption), [re.escape(headers[0])], num=k)
            target_entities = set(remained_core_entities[1:])
            ranked_entities = [1 if z[0] in target_entities else 0 for z in sorted(pall.items(),key=lambda z:z[1],reverse=True)]
            # dev_result[table_id] = [set(seed), B, C, B|C]
            dev_result[table_id] = [set(seed), target_entities, ranked_entities, pall, pee, pce, ple, cand_e, cand_c]
            # pdb.set_trace()
    # pdb.set_trace()
    # for i in range(3):
        # print(np.mean([len(x[0]&x[i+1])/len(x[0]) for _,x in dev_result.items()]), np.mean([len(x[i+1])for _,x in dev_result.items()]))
    print("tables ignored %d"%tables_ignored)
    pdb.set_trace()
    print("map: %f"%mean_average_precision([z[2] for _,z in dev_result.items()]))
    with open(os.path.join(data_dir, "dev_result.pkl"),"wb") as f:
        pickle.dump(dev_result, f)
    print("finish val")