Exemple #1
0
    def test_iris(self):

        # Generate full set of constraints for comparison with reference
        # implementation
        mask = self.iris_labels[None] == self.iris_labels[:, None]
        a, b = np.nonzero(np.triu(mask, k=1))
        c, d = np.nonzero(np.triu(~mask, k=1))

        # Full metric
        n_features = self.iris_points.shape[1]
        mmc = MMC(convergence_threshold=0.01, init=np.eye(n_features) / 10)
        mmc.fit(*wrap_pairs(self.iris_points, [a, b, c, d]))
        expected = [[+0.000514, +0.000868, -0.001195, -0.001703],
                    [+0.000868, +0.001468, -0.002021, -0.002879],
                    [-0.001195, -0.002021, +0.002782, +0.003964],
                    [-0.001703, -0.002879, +0.003964, +0.005648]]
        assert_array_almost_equal(expected,
                                  mmc.get_mahalanobis_matrix(),
                                  decimal=6)

        # Diagonal metric
        mmc = MMC(diagonal=True)
        mmc.fit(*wrap_pairs(self.iris_points, [a, b, c, d]))
        expected = [0, 0, 1.210220, 1.228596]
        assert_array_almost_equal(np.diag(expected),
                                  mmc.get_mahalanobis_matrix(),
                                  decimal=6)

        # Supervised Full
        mmc = MMC_Supervised()
        mmc.fit(self.iris_points, self.iris_labels)
        csep = class_separation(mmc.transform(self.iris_points),
                                self.iris_labels)
        self.assertLess(csep, 0.15)

        # Supervised Diagonal
        mmc = MMC_Supervised(diagonal=True)
        mmc.fit(self.iris_points, self.iris_labels)
        csep = class_separation(mmc.transform(self.iris_points),
                                self.iris_labels)
        self.assertLess(csep, 0.2)
  def test_iris(self):

    # Generate full set of constraints for comparison with reference implementation
    n = self.iris_points.shape[0]
    mask = (self.iris_labels[None] == self.iris_labels[:,None])
    a, b = np.nonzero(np.triu(mask, k=1))
    c, d = np.nonzero(np.triu(~mask, k=1))

    # Full metric
    mmc = MMC(convergence_threshold=0.01)
    mmc.fit(*wrap_pairs(self.iris_points, [a,b,c,d]))
    expected = [[+0.000514, +0.000868, -0.001195, -0.001703],
                [+0.000868, +0.001468, -0.002021, -0.002879],
                [-0.001195, -0.002021, +0.002782, +0.003964],
                [-0.001703, -0.002879, +0.003964, +0.005648]]
    assert_array_almost_equal(expected, mmc.get_mahalanobis_matrix(),
                              decimal=6)

    # Diagonal metric
    mmc = MMC(diagonal=True)
    mmc.fit(*wrap_pairs(self.iris_points, [a,b,c,d]))
    expected = [0, 0, 1.210220, 1.228596]
    assert_array_almost_equal(np.diag(expected), mmc.get_mahalanobis_matrix(),
                              decimal=6)

    # Supervised Full
    mmc = MMC_Supervised()
    mmc.fit(self.iris_points, self.iris_labels)
    csep = class_separation(mmc.transform(self.iris_points), self.iris_labels)
    self.assertLess(csep, 0.15)
    
    # Supervised Diagonal
    mmc = MMC_Supervised(diagonal=True)
    mmc.fit(self.iris_points, self.iris_labels)
    csep = class_separation(mmc.transform(self.iris_points), self.iris_labels)
    self.assertLess(csep, 0.2)