Exemple #1
0
def train(net, set_id, train_loader, test_loader, loss_func, optimizer, num_epochs, lr, device):
    import time
    for epoch in range(num_epochs):
        start = time.time()
        train_loss, test_loss = 0.0, 0.0
        train_kappa, test_kappa = 0.0, 0.0
        n, m = 0, 0
        for essays, labels, lengths in train_loader:
            essays = essays.to(device)
            labels = labels.to(device)
            lengths = lengths.to(device)
            y = net(essays, lengths)
            loss = loss_func(y, labels)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            train_loss += loss.item() * labels.shape[0]
            train_kappa += metrics.kappa(y.cpu().detach().numpy(), labels.cpu().detach().numpy(), 'quadratic') * labels.shape[0]
            n += labels.shape[0]
        train_loss /= n
        train_kappa /= n

        net.eval()
        with torch.no_grad():
            for essays, labels, lengths in test_loader:
                essays = essays.to(device)
                labels = labels.to(device)
                lengths = lengths.to(device)
                y = net(essays, lengths)
                loss = loss_func(y, labels)

                test_loss += loss.item() * labels.shape[0]
                test_kappa += metrics.kappa(y.cpu().detach().numpy(), labels.cpu().detach().numpy(), 'quadratic') * labels.shape[0]
                m += labels.shape[0]
        net.train()
        test_loss /= m
        test_kappa /= m

        if test_kappa > max_test_kappa[set_id]:
            max_test_kappa[set_id] = test_kappa
            torch.save(net.state_dict(), 'HW2/models/model_' + str(set_id) + '.pt')
            print(max_test_kappa)

        end = time.time()
        runtime = end - start
        print('set %d, epoch %d, train loss: %.4f, train kappa: %.4f, dev loss: %.4f, dev kappa: %.4f, time: %.2f'
                % (set_id, epoch, train_loss, train_kappa, test_loss, test_kappa, runtime))
Exemple #2
0
def predict(set_id, min_score, max_score, net, test_loader, device):
    preds = []
    essays_ids = []
    test_kappa = 0.0

    net.eval()
    with torch.no_grad():
        m = 0
        for essays, lengths, labels, ids, prompts in test_loader:
            essays = essays.to(device)
            prompts = prompts.to(device)
            lengths = lengths.to(device)
            pred = net(essays, prompts, lengths)

            pred = pred * (max_score - min_score) + min_score
            labels = labels * (max_score - min_score) + min_score

            pred = pred.cpu().detach().numpy()
            test_kappa += metrics.kappa(pred, labels,
                                        'quadratic') * len(labels)

            preds.extend(pred.round().tolist())
            essays_ids.extend(ids.tolist())
            m += len(labels)
    test_kappa /= m
    return preds, essays_ids, test_kappa
Exemple #3
0
def train(net, loss_func, optimizer, train_loader, dev_loader):
    for epoch in range(num_epochs):
        start = time.time()
        train_loss, dev_loss = 0.0, 0.0
        train_kappa, dev_kappa = 0.0, 0.0
        n, m = 0, 0
        for seqs, seqs_len, labels in train_loader:
            seqs = seqs.to(device)
            seqs_len = seqs_len.to(device)
            labels = labels.to(device)
            y = net(seqs, seqs_len)
            loss = loss_func(y, labels)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            train_loss += loss.item() * seqs.shape[0]
            train_kappa += metrics.kappa(y.cpu().detach().numpy(), labels.cpu().detach().numpy(), 'quadratic') * seqs.shape[0]
            n += seqs.shape[0]
        train_loss /= n
        train_kappa /= n
        
        net.eval()
        with torch.no_grad():
            for seqs, seqs_len, labels in dev_loader:
                seqs = seqs.to(device)
                seqs_len = seqs_len.to(device)
                labels = labels.to(device)
                y = net(seqs, seqs_len)
                loss = loss_func(y, labels)
                
                dev_loss += loss.item() * labels.shape[0]
                dev_kappa += metrics.kappa(y.cpu().detach().numpy(), labels.cpu().detach().numpy(), 'quadratic') * seqs.shape[0]
                m += labels.shape[0]
        net.train()
        dev_loss /= m
        dev_kappa /= m
        
        end = time.time()
        runtime = end - start
        print('epoch %d, train loss: %.4f, train kappa: %.4f, dev loss: %.4f, dev kappa: %.4f, time: %.2f'
            % (epoch, train_loss, train_kappa, dev_loss, dev_kappa, runtime))
Exemple #4
0
def begin_testing(filename, classifier):
	print "\nLoading the test data..."
	test_docs = docR.get_list(filename)
	data = []
	target = []
	for doc in test_docs:
		data.append(doc.vector[:-1])
		target.append(doc.vector[-1])
	np_data = np.array(data)
	np_target = np.array(target)
	results = classifier.predict(np_data)
	kp = kappa(np_target, results)
	print "\nThe Average Quadratic Weighted Kappa obtained is: ", kp, "\n"
	print "="*50
Exemple #5
0
def evaluate_kappa(opts, model, data_iter, batch_size):
    model.eval()
    predicted_labels = []
    true_labels = []
    hidden = model.init_hidden(batch_size)
    for i in range(len(data_iter)):
        vectors, labels = get_batch(data_iter[i])
        vectors = torch.stack(vectors).squeeze()
        vectors = vectors.transpose(1, 0)

        if opts.use_cuda:
            vectors = vectors.cuda()
        vectors = Variable(vectors)
        
        hidden = repackage_hidden(hidden)
        output, hidden = model(vectors, hidden)

        predicted = [int(round(float(num))) for num in output.data.cpu().numpy()]
        predicted_labels.extend([round(float(num)) for num in output.data.cpu().numpy()])
        labels = [int(label[0]) for label in labels]
        true_labels.extend(labels)

    return kappa(true_labels, predicted_labels, weights = "quadratic")
Exemple #6
0
    def evaluating(self, model, dataset, split):
        """
          input:
            model: (object) pytorch model
            dataset: (object) dataset
            split: (str) split of dataset in ['train', 'val', 'test']
          return [overall_accuracy, precision, recall, f1-score, jaccard, kappa]
        """
        args = self.args
        oa, precision, recall, f1, jac, kappa = 0, 0, 0, 0, 0, 0
        model.eval()
        data_loader = DataLoader(dataset,
                                 args.batch_size,
                                 num_workers=4,
                                 shuffle=False)
        batch_iterator = iter(data_loader)
        steps = len(dataset) // args.batch_size

        start = time.time()
        for step in range(steps):
            x, y = next(batch_iterator)
            x = Variable(x, volatile=True)
            y = Variable(y, volatile=True)
            if args.cuda:
                x = x.cuda()
                y = y.cuda()
            # calculate pixel accuracy of generator
            gen_y = model(x)
            if self.is_multi:
                gen_y = gen_y[0]
            oa += metrics.overall_accuracy(gen_y.data, y.data)
            precision += metrics.precision(gen_y.data, y.data)
            recall += metrics.recall(gen_y.data, y.data)
            f1 += metrics.f1_score(gen_y.data, y.data)
            jac += metrics.jaccard(gen_y.data, y.data)
            kappa += metrics.kappa(gen_y.data, y.data)

        _time = time.time() - start

        if not os.path.exists(os.path.join(Logs_DIR, 'statistic')):
            os.makedirs(os.path.join(Logs_DIR, 'statistic'))

        # recording performance of the model
        nb_samples = steps * args.batch_size
        basic_info = [
            self.date, self.method, self.epoch, self.iter, nb_samples, _time
        ]
        basic_info_names = [
            'date', 'method', 'epochs', 'iters', 'nb_samples', 'time(sec)'
        ]

        perform = [
            round(idx / steps, 3)
            for idx in [oa, precision, recall, f1, jac, kappa]
        ]
        perform_names = [
            "overall_accuracy", "precision", "recall", "f1-score", "jaccard",
            "kappa"
        ]
        cur_log = pd.DataFrame([basic_info + perform],
                               columns=basic_info_names + perform_names)
        # save performance
        if os.path.exists(
                os.path.join(Logs_DIR, 'statistic', "{}.csv".format(split))):
            logs = pd.read_csv(
                os.path.join(Logs_DIR, 'statistic', "{}.csv".format(split)))
        else:
            logs = pd.DataFrame([])
        logs = logs.append(cur_log, ignore_index=True)
        logs.to_csv(os.path.join(Logs_DIR, 'statistic',
                                 "{}.csv".format(split)),
                    index=False,
                    float_format='%.3f')
Exemple #7
0
def go():
    ds = load_dataset()
    pd_train, pd_solut = ds['train'], ds['solut']

    first = False
    if first:
        # traditional featvecs for each text
        pd_train = abstract_featdict(pd_train)
        pd_solut = abstract_featdict(pd_solut)

        # wv for each text
        TEXT_DIM = 300
        wv = wv_pre_model(ds, wv_dim=TEXT_DIM)
        for df in [pd_train, pd_solut]:
            df['wv'] = df.apply(
                lambda e: text_to_fv_avg(wv, e['BOW'], TEXT_DIM), axis=1)

        # save data
        save_dataset(ds)

    # featvec for each text
    FV_NAMES = [
        'wv',  # here!!
        # 'len',
        # 'tok',
        # 'tok_wrong',
        # 'tok_uniq',
        # 'tok_long',
        # 'tok_stop',
        # 'sent',
        # 'sent_complex_max',
        # 'sent_len_mean',
        # 'sent_long',
        # 'noun',
        # 'propn',
        # 'adj',
        # 'pron',
        # 'verb',
        # 'adv',
        # 'cconj',
        # 'det',
        # 'part',
        # 'punct',
        # 'comma',
    ]
    df = pd_train
    # for col in FV_NAMES: print('%s - mean: %.2f var: %.2f' % (col, df[col].mean(), df[col].var()))

    # DNN model
    inshape = (len(FV_NAMES), )
    model = Sequential([
        # LSTM(32, input_shape=(nb_time_steps, nb_input_vector))),
        Dense(32,
              activation='relu',
              kernel_initializer='he_normal',
              input_shape=inshape),
        Dropout(0.2),
        # Dense(8, activation='relu', kernel_initializer='he_normal'),
        # Dropout(dropout),
        Dense(1),
    ])
    model.build()
    model.summary()
    adam = Adam(lr=0.0001,
                beta_1=0.9,
                beta_2=0.999,
                epsilon=None,
                decay=0.0,
                amsgrad=False)
    model.compile(optimizer=adam, loss='mse', metrics=['mse', 'mae'])

    for topic, df in pd_train.groupby('topic'):
        print('[Topic] working on topic %r' % topic)
        X, y = df[FV_NAMES], df['score'].astype(np.float64)
        X_train, X_test, y_train, y_test = train_test_split(X,
                                                            y,
                                                            test_size=0.3,
                                                            random_state=42)

        model.fit(X_train, y_train)
        scores = cross_val_score(model, X_test, y_test, cv=3)
        print("Accuracy: %0.2f (+/- %0.2f)" %
              (scores.mean(), scores.std() * 2))

        y_pred = model.predict(X_test)
        kp = kappa(y_pred, y_test, weights='quadratic')
        print('kappa: %r, topic %r' % (kp, topic))

    # applicational solution
    df = pd_solut[pd_solut.topic == topic]
    X = df[FV_NAMES]
    y_pred = model.predict(X)

    def trim_range(topic, score):
        RANGE = {
            1: (0, 15),
            2: (0, 8),
            3: (0, 5),
            4: (0, 5),
            5: (0, 5),
            6: (0, 5),
            7: (0, 15),
            8: (0, 70),
        }
        score = int(round(score))
        rng = RANGE[topic]
        if score < rng[0]: score = rng[0]
        elif score > rng[1]: score = rng[1]
        return score

    res = []
    ids = list(df['id'])  # reindex column 'id'
    for i in range(len(y_pred)):
        id = ids[i]
        score = trim_range(topic, y_pred[i])
        res.append([id, topic, score])
    return res
Exemple #8
0
def main():
    results = []
    cross_validate_list = []

    for i in range(1, 9):

        _feature = feature

        # dev_x, dev_y = regression.generate_model_input(dev_dataset.data[str(i)][:], _feature)
        # x, y = regression.generate_model_input(train_dataset.data[str(i-1)] + dev_dataset.data[str(i-1)][:-100], _feature)
        # x, y = regression.generate_model_input(train_dataset.data[str(i + 1)],
        #                                        _feature)
        # test_x = regression.generate_model_test_input(test_dataset.data[str(i)], _feature)

        x_s = []
        y_s = []
        print('used_set', used_set[i - 1])
        for j in used_set[i - 1]:
            x, y = regression.generate_model_input_for_ranges(
                train_dataset.data[str(j)], _feature, score_ranges[j - 1])
            standerizer = StandardScaler().fit(x)
            x = standerizer.transform(x)

            x_s.append(x)
            y_s.append(y)

        x = np.concatenate(x_s, axis=0)
        y = np.concatenate(y_s, axis=0)
        # print(x[0])

        train_dev_test_x, _ = regression.generate_model_input_for_ranges(
            train_dataset.data[str(i)] + dev_dataset.data[str(i)] +
            test_dataset.data[str(i)], _feature, score_ranges[i - 1])

        dev_test_standerizer = StandardScaler().fit(train_dev_test_x)
        dev_x, dev_y = regression.generate_model_input_for_ranges(
            dev_dataset.data[str(i)], _feature, score_ranges[i - 1])
        test_x = regression.generate_model_test_input(
            test_dataset.data[str(i)], _feature)
        dev_x = dev_test_standerizer.transform(dev_x)
        test_x = dev_test_standerizer.transform(test_x)

        # standerizer = StandardScaler().fit(x)
        # x = standerizer.transform(x)

        # standerizer = StandardScaler().fit(x)
        # _train_x = standerizer.transform(x)
        # _dev_x = standerizer.transform(dev_x)
        # _test_x = standerizer.transform(test_x)

        kf = KFold(n_splits=9)

        dev_predict_list = []
        model_list = []
        test_list = []
        dev_result_list = []
        test_result_list = []

        for train_index, test_index in kf.split(x, y):
            x_train, x_test = x[train_index], x[test_index]
            y_train, y_test = y[train_index], y[test_index]

            # print(x_train[0])
            # print('train size', x_train.shape[0])

            standerizer = StandardScaler().fit(x_train)

            _x_train = standerizer.transform(x_train)
            _x_test = standerizer.transform(x_test)
            _dev_x = standerizer.transform(dev_x)
            _test_x = standerizer.transform(test_x)

            # _x_train = x_train
            # _x_test = x_test
            # _dev_x = dev_x
            # _test_x = test_x

            # regressor = regression.svr_regressor(_x_train, y_train)
            regressor = regression.gradient_boosting_regressor(
                _x_train,
                y_train,
                num_estimators=int(_x_train.shape[0] / 20) +
                model_count[i - 1])
            # regressor = regression.gradient_boosting_regressor(_x_train, y_train)
            model_list.append(regressor)

            predict_dev_y = regressor.predict(_dev_x)

            _dev_y = [
                predict * (score_ranges[i - 1][1] - score_ranges[i - 1][0]) +
                score_ranges[i - 1][0] for predict in dev_y
            ]
            _predict_dev_y = [
                predict * (score_ranges[i - 1][1] - score_ranges[i - 1][0]) +
                score_ranges[i - 1][0] for predict in predict_dev_y
            ]

            dev_result = metrics.kappa(y_true=_dev_y,
                                       y_pred=_predict_dev_y,
                                       weights='quadratic')

            # print(dev_result)
            dev_result_list.append(dev_result)
            # dev_predict_list.append(np.around(_predict_dev_y))
            dev_predict_list.append(_predict_dev_y)

            # y_test_predict = regressor.predict(_x_test)
            # test_result = metrics.kappa(y_true=y_test, y_pred=y_test_predict, weights='quadratic')
            # test_result_list.append(test_result)
            #
            test_predict_y = regressor.predict(_test_x)
            # test_predict_y = [predict * (score_ranges[i - 1][1] - score_ranges[i - 1][0]) + score_ranges[i - 1][0] for
            #                   predict in test_predict_y]
            test_list.append(test_predict_y)
            # test_list.append(np.around(test_predict_y))

        dev_predict = [
            sum(x) / len(dev_predict_list) for x in zip(*dev_predict_list)
        ]
        # dev_predict = predict_bag(dev_predict_list)
        # dev_predict = [predict * (score_ranges[i - 1][1] - score_ranges[i - 1][0]) + score_ranges[i - 1][0] for predict
        #                in dev_predict]
        dev_predict = np.around(dev_predict)
        # print(dev_predict)
        dev_y = [
            y * (score_ranges[i - 1][1] - score_ranges[i - 1][0]) +
            score_ranges[i - 1][0] for y in dev_y
        ]

        dev_result = metrics.kappa(y_true=dev_y,
                                   y_pred=dev_predict,
                                   weights='quadratic')

        # print('cross validate average', np.average(test_result_list))
        print('dev ', i, ' ', dev_result)
        # cross_validate_list.append(np.average(test_result_list))
        results.append(dev_result)

        # test_predict_y = predict_bag(test_list)
        #
        test_predict_y = [sum(x) / len(test_list) for x in zip(*test_list)]
        test_predict_y = [
            predict * (score_ranges[i - 1][1] - score_ranges[i - 1][0]) +
            score_ranges[i - 1][0] for predict in test_predict_y
        ]
        # print('average ', np.average(test_predict_y))

        # test_predict_y = np.around(test_predict_y)

        for idx, sample in enumerate(test_dataset.data[str(i)]):
            sample['domain1_score'] = int(test_predict_y[idx])
        all_test_samples.extend(test_dataset.data[str(i)])

        save_to_tsv(test_dataset.data[str(i)], '../' + str(i) + '.tsv')
    print(np.average(results))
Exemple #9
0
        'x12', 'x13', 'x14', 'x15', 'x16'
    ]]
    train_y = train_data['score']

    test_id = test_data['id'].values.tolist()
    test_x = test_data[[
        'x1', 'x2', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x9', 'x10', 'x11',
        'x12', 'x13', 'x14', 'x15', 'x16'
    ]]
    test_y = test_data['score']

    from sklearn.svm import SVC
    svm = SVC(gamma='scale')
    svm.fit(train_x.values, train_y.values)
    pred_label = svm.predict(test_x.values)
    acc = metrics.kappa(test_y.values, pred_label, 'quadratic')
    svm_label.append(pred_label.tolist())
    svm_kappa.append(acc)

    from sklearn.linear_model import LogisticRegression
    lr = LogisticRegression(random_state=0,
                            solver='lbfgs',
                            multi_class='multinomial',
                            penalty='l2')
    lr.fit(train_x.values, train_y.values)
    pred_label = lr.predict(test_x.values).round()
    acc = metrics.kappa(test_y.values, pred_label, 'quadratic')
    lr_label.append(pred_label.tolist())
    lr_kappa.append(acc)

    essay_id.append(test_id)
Exemple #10
0
def go():
    res = []
    ds = load_dataset()
    pd_train = ds['train']
    pd_solut = ds['solut']
    abstract_featdict(pd_train)
    abstract_featdict(pd_solut)
    # save_dataset(ds)  # SAVE MODEL

    FV_NAMES = [
        'len',
        'tok',
        'tok_wrong',
        'tok_uniq',
        # 'tok_long',
        'tok_stop',
        'sent',
        # 'sent_complex_max',
        'sent_len_mean',
        # 'sent_long',
        'noun',
        # 'propn',
        'adj',
        # 'pron',
        'verb',
        'adv',
        # 'cconj',
        # 'det',
        # 'part',
        'punct',
        'comma',
    ]
    df = ds['train']
    for col in FV_NAMES:
        print('%s - mean: %.2f var: %.2f' %
              (col, df[col].mean(), df[col].var()))

    for topic, df in pd_train.groupby('topic'):
        print('[Topic] working on topic %r' % topic)
        X, y = df[FV_NAMES], df['score'].astype(np.float64)

        # train
        X_train, X_test, y_train, y_test = train_test_split(X,
                                                            y,
                                                            test_size=0.3,
                                                            random_state=42)
        MODLES = [
            [('linr', LinearRegression(normalize=True, copy_X=False,
                                       n_jobs=16))],
            # [('std', StandardScaler()), ('gs:svr', GridSearchCV(SVR(kernel='linear'), iid=True, param_grid={'C': [0.75, 1.5, 3, 5]}, cv=3, n_jobs=16))],
            # [('std', StandardScaler()), ('gs:lsvc', GridSearchCV(LinearSVC(), iid=True, param_grid={'C': [0.75, 1.5, 3, 5]}, cv=3, n_jobs=16))],
            [('gs:knn',
              GridSearchCV(KNeighborsRegressor(weights="distance"),
                           iid=True,
                           param_grid={'n_neighbors': [12, 16, 24, 32, 36]},
                           cv=3,
                           n_jobs=16))],
            [('gs:dt',
              GridSearchCV(DecisionTreeRegressor(),
                           iid=True,
                           param_grid={'max_depth': [6, 12, 18, 24, 30]},
                           cv=3,
                           n_jobs=16))],
            [('gs:et',
              GridSearchCV(ExtraTreesRegressor(),
                           iid=True,
                           param_grid={'n_estimators': [32, 64, 96, 128]},
                           cv=3,
                           n_jobs=16))],
            [('gs:gb',
              GridSearchCV(GradientBoostingRegressor(),
                           iid=True,
                           param_grid={'n_estimators': [32, 64, 96, 128]},
                           cv=3,
                           n_jobs=16))],
            [('gs:rf',
              GridSearchCV(RandomForestRegressor(),
                           iid=True,
                           param_grid={'n_estimators': [32, 64, 96, 128]},
                           cv=3,
                           n_jobs=16))],
            [('gs:etc',
              GridSearchCV(ExtraTreesClassifier(),
                           iid=True,
                           param_grid={'n_estimators': [32, 64, 96, 128]},
                           cv=3,
                           n_jobs=16))],
            [('gs:en',
              GridSearchCV(ElasticNet(),
                           iid=True,
                           param_grid={
                               'l1_ratio': [0.01, 0.1, 0.5, 0.9],
                               'alpha': [0.01, 0.1, 1]
                           },
                           cv=3,
                           n_jobs=16))],
        ]
        kp_mdl = []
        for pl in MODLES:
            model = Pipeline(pl)
            model.fit(X_train, y_train)
            scores = cross_val_score(model, X_test, y_test, cv=3)
            print("Accuracy: %0.2f (+/- %0.2f)" %
                  (scores.mean(), scores.std() * 2))

            y_pred = model.predict(X_test)
            kp = kappa(y_pred, y_test, weights='quadratic')
            print('kappa: %r, using %r' % (kp, [m[0] for m in pl]))

            kp_mdl.append((kp, model))

        # ok we select best k-models and use avgval of predicted
        N_MODELS = 3
        kp_mdl.sort(reverse=True)
        print('kappas: %r' % [k for k, _ in kp_mdl])
        models = [m for _, m in kp_mdl[:N_MODELS]]

        # applicational solution
        df = pd_solut[pd_solut.topic == topic]
        X = df[FV_NAMES]
        y_preds = [model.predict(X) for model in models]
        y_pred = [
            sum(y_preds[i][j] for i in range(N_MODELS)) / N_MODELS
            for j in range(len(X))
        ]

        def trim_range(topic, score):
            RANGE = {
                1: (0, 15),
                2: (0, 8),
                3: (0, 5),
                4: (0, 5),
                5: (0, 5),
                6: (0, 5),
                7: (0, 15),
                8: (0, 70),
            }
            score = int(round(score))
            rng = RANGE[topic]
            if score < rng[0]: score = rng[0]
            elif score > rng[1]: score = rng[1]
            return score

        ids = list(df['id'])  # reindex column 'id'
        for i in range(len(y_pred)):
            id = ids[i]
            score = trim_range(topic, y_pred[i])
            res.append([id, topic, score])

    return res
Exemple #11
0
        dev_x = dev_test_standerizer.transform(dev_x)
        test_x = dev_test_standerizer.transform(test_x)

        regressor = regression.gradient_boosting_regressor(x, y)
        # num_estimators=int(x.shape[0] / 20) + model_count[i - 1])
        predict_dev_y = regressor.predict(dev_x)

        predict_dev_y = [
            predict * (score_ranges[i - 1][1] - score_ranges[i - 1][0]) +
            score_ranges[i - 1][0] for predict in predict_dev_y
        ]
        # dev_predict = np.around(dev_predict)
        # print(dev_predict)
        dev_y = [
            y * (score_ranges[i - 1][1] - score_ranges[i - 1][0]) +
            score_ranges[i - 1][0] for y in dev_y
        ]

        dev_result = metrics.kappa(y_true=dev_y,
                                   y_pred=predict_dev_y,
                                   weights='quadratic')
        current_results.append(dev_result)
        # print(dev_result)

    print(max(current_results))
    index = current_results.index(max(current_results))
    print(all_selected[index])
    results.append(max(current_results))

print(np.average(results))
# print(np.average(results))