def my_HSIC(X, Y): if X.ndim == 1: temp = X t1 = temp.reshape(len(temp), 1) t2 = temp.reshape(1, len(temp)) T_X = np.dot(t1, t2) else: T_X = mf.tanimoto(X, X) if Y.ndim == 1: temp = Y t1 = temp.reshape(len(temp), 1) t2 = temp.reshape(1, len(temp)) T_Y = np.dot(t1, t2) else: T_Y = mf.tanimoto(Y, Y) return np.sum(centering(T_X) * centering(T_Y))
np.set_printoptions(suppress=True) K1 = np.zeros((m, m)) for i in range(m): for j in range(m): K1[i][j] = round(metrics_function.cosine(data[i], data[j]), 6) print(K1) with open( 'D:/Study/Bioinformatics/QSP_new/kernel_matrix/KM_train_cosine/KM_cosine_' + name + '_train.csv', 'w', newline='') as csvfile: writer = csv.writer(csvfile) for row in K1: writer.writerow(row) csvfile.close() K3 = np.zeros((m, m)) for i in range(m): for j in range(m): K3[i][j] = round(metrics_function.tanimoto(data[i], data[j]), 6) print(K3) with open( 'D:/Study/Bioinformatics/QSP_new/kernel_matrix/KM_train_tanimoto/KM_tanimoto_' + name + '_train.csv', 'w', newline='') as csvfile: writer = csv.writer(csvfile) for row in K3: writer.writerow(row) csvfile.close()
K1 = np.zeros((m, p)) for i in range(m): for j in range(p): K1[i][j] = round(metrics_function.cosine(X_test[i], X_train[j]), 6) print(K1) with open( 'D:/study/Bioinformatics/AMP/kernel_matrix/KM_test_cosine/KM_cosine_' + name + '_test.csv', 'w', newline='') as csvfile: writer = csv.writer(csvfile) for row in K1: writer.writerow(row) csvfile.close() K3 = np.zeros((m, p)) for i in range(m): for j in range(p): K3[i][j] = round(metrics_function.tanimoto(X_test[i], X_train[j]), 6) print(K3) with open( 'D:/study/Bioinformatics/AMP/kernel_matrix/KM_test_tanimoto/KM_tanimoto_' + name + '_test.csv', 'w', newline='') as csvfile: writer = csv.writer(csvfile) for row in K3: writer.writerow(row) csvfile.close()
metrics_function.cosine(X_test[i], X_train[j]), 6) print(K2) with open('D:/study/Bioinformatics/QSP/200p_200n/10_fold/' + name + '/km_test/KM_cosine_' + name + '_test_' + str(k) + '.csv', 'w', newline='') as csvfile: writer = csv.writer(csvfile) for row in K2: writer.writerow(row) csvfile.close() K3 = np.zeros((p, p)) for i in range(p): for j in range(p): K3[i][j] = round( metrics_function.tanimoto(X_train[i], X_train[j]), 6) print(K3) with open('D:/study/Bioinformatics/QSP/200p_200n/10_fold/' + name + '/km_train/KM_tanimoto_' + name + '_train_' + str(k) + '.csv', 'w', newline='') as csvfile: writer = csv.writer(csvfile) for row in K3: writer.writerow(row) csvfile.close() K4 = np.zeros((m, p)) for i in range(m): for j in range(p): K4[i][j] = round(