Exemple #1
0
def ParMultComplex(A, B):
    '''
    compute complex mult of hypre real matrices

    A = (R_A, I_A)
    B = (R_B, I_B)

    (R_A*R_B - I_A*I_B, R_A*I_B + I_A*R_B)
    '''
    from mpi4py import MPI
    import mfem.par as mfem

    comm = MPI.COMM_WORLD
    num_proc = MPI.COMM_WORLD.size
    myid = MPI.COMM_WORLD.rank

    R_A, I_A = A
    R_B, I_B = B

    if I_A is None and I_B is None:
        r = mfem.ParMult(R_A, R_B)
        r.CopyRowStarts()
        r.CopyColStarts()

        return (r, None)
    elif I_A is None:
        r = mfem.ParMult(R_A, R_B)
        i = mfem.ParMult(R_A, I_B)
        r.CopyRowStarts()
        r.CopyColStarts()
        i.CopyRowStarts()
        i.CopyColStarts()
        return (r, i)

    elif I_B is None:
        r = mfem.ParMult(R_A, R_B)
        i = mfem.ParMult(I_A, R_B)
        r.CopyRowStarts()
        r.CopyColStarts()
        i.CopyRowStarts()
        i.CopyColStarts()

        return (r, i)
    else:
        A = mfem.ParMult(R_A, R_B)
        B = mfem.ParMult(I_A, I_B)
        C = mfem.ParMult(R_A, I_B)
        D = mfem.ParMult(I_A, R_B)
        col_starts = A.GetColPartArray()
        col_starts[2] = A.N()
        r = ToHypreParCSR((ToScipyCoo(A) - ToScipyCoo(B)).tocsr(),
                          col_starts=col_starts)
        i = ToHypreParCSR((ToScipyCoo(C) + ToScipyCoo(D)).tocsr(),
                          col_starts=col_starts)
        return (r, i)
def schur(*names, **kwargs):
    # shucr("A1", "B1", scale=(1.0, 1e3))
    prc = kwargs.pop('prc')
    blockname = kwargs.pop('blockname')

    r0 = prc.get_row_by_name(blockname)
    c0 = prc.get_col_by_name(blockname)
    A0 = prc.get_operator_block(r0, c0)

    scales = kwargs.pop('scale', [1] * len(names))
    print_level = kwargs.pop('print_level', -1)
    for name, scale in zip(names, scales):
        r1 = prc.get_row_by_name(name)
        c1 = prc.get_col_by_name(name)
        B = prc.get_operator_block(r0, c1)
        Bt = prc.get_operator_block(r1, c0)
        Bt = Bt.Copy()
        B0 = get_block(A, r1, c1)
        if use_parallel:
            Md = mfem.HyprePaarVector(MPI.COMM_WORLD, B0.GetGlobalNumRows(),
                                      B0.GetColStarts())
        else:
            Md = mfem.Vector()
        A0.GetDiag(Md)
        Md *= scale
        if use_parallel:
            Bt.InvScaleRows(Md)
            S = mfem.ParMult(B, Bt)
            invA0 = mfem.HypreBoomerAMG(S)
        else:
            S = mfem.Mult(B, Bt)
            invA0 = mfem.DSmoother(S)
        invA0.iterative_mode = False
        invA0.SetPrintLevel(print_level)
    return invA0
def schur(*names, **kwargs):
    # schur("A1", "B1", scale=(1.0, 1e3))
    prc = kwargs.pop('prc')
    blockname = kwargs.pop('blockname')

    r0 = prc.get_row_by_name(blockname)
    c0 = prc.get_col_by_name(blockname)

    scales = kwargs.pop('scale', [1] * len(names))
    print_level = kwargs.pop('print_level', -1)

    S = []
    for name, scale in zip(names, scales):
        r1 = prc.get_row_by_name(name)
        c1 = prc.get_col_by_name(name)
        B = prc.get_operator_block(r0, c1)
        Bt = prc.get_operator_block(r1, c0)

        B0 = prc.get_operator_block(r1, c1)
        if use_parallel:
            Bt = Bt.Transpose()
            Bt = Bt.Transpose()
            Md = mfem.HypreParVector(MPI.COMM_WORLD, B0.GetGlobalNumRows(),
                                     B0.GetColStarts())
        else:
            Bt = Bt.Copy()
            Md = mfem.Vector()
        B0.GetDiag(Md)
        Md *= scale
        if use_parallel:

            Bt.InvScaleRows(Md)
            S.append(mfem.ParMult(B, Bt))
        else:
            S.append(mfem.Mult(B, Bt))

    if use_parallel:
        from mfem.common.parcsr_extra import ToHypreParCSR, ToScipyCoo

        S2 = [ToScipyCoo(s) for s in S]
        for s in S2[1:]:
            S2[0] = S2[0] + s
        S = ToHypreParCSR(S2[0].tocsr())
        invA0 = mfem.HypreBoomerAMG(S)

    else:
        from mfem.common.sparse_utils import sparsemat_to_scipycsr

        S2 = [sparsemat_to_scipycsr(s).tocoo() for s in S]
        for s in S2[1:]:
            S2[0] = S2[0] + s
        S = mfem.SparseMatrix(S2.tocsr())
        invA0 = mfem.DSmoother(S)

    invA0.iterative_mode = False
    invA0.SetPrintLevel(print_level)
    invA0._S = S

    return invA0
    def solve_parallel(self, A, b, x=None):
        from mpi4py import MPI
        myid = MPI.COMM_WORLD.rank
        nproc = MPI.COMM_WORLD.size
        from petram.helper.mpi_recipes import gather_vector

        def get_block(Op, i, j):
            try:
                return Op._linked_op[(i, j)]
            except KeyError:
                return None

        offset = A.RowOffsets()
        rows = A.NumRowBlocks()
        cols = A.NumColBlocks()

        if self.gui.write_mat:
            for i in range(cols):
                for j in range(rows):
                    m = get_block(A, i, j)
                    if m is None: continue
                    m.Print('matrix_' + str(i) + '_' + str(j))
            for i, bb in enumerate(b):
                for j in range(rows):
                    v = bb.GetBlock(j)
                    v.Print('rhs_' + str(i) + '_' + str(j) + '.' + smyid)
            if x is not None:
                for j in range(rows):
                    xx = x.GetBlock(j)
                    xx.Print('x_' + str(i) + '_' + str(j) + '.' + smyid)

        M = mfem.BlockDiagonalPreconditioner(offset)

        prcs = dict(self.gui.preconditioners)
        name = self.Aname
        assert not self.gui.parent.is_complex(), "can not solve complex"
        if self.gui.parent.is_converted_from_complex():
            name = sum([[n, n] for n in name], [])

        for k, n in enumerate(name):
            prc = prcs[n][1]
            if prc == "None": continue
            name = "".join([tmp for tmp in prc if not tmp.isdigit()])

            A0 = get_block(A, k, k)
            if A0 is None and not name.startswith('schur'): continue

            if hasattr(mfem.HypreSmoother, prc):
                invA0 = mfem.HypreSmoother(A0)
                invA0.SetType(getattr(mfem.HypreSmoother, prc))
            elif prc == 'ams':
                depvar = self.engine.r_dep_vars[k]
                dprint1("setting up AMS for ", depvar)
                prec_fespace = self.engine.fespaces[depvar]
                invA0 = mfem.HypreAMS(A0, prec_fespace)
                invA0.SetSingularProblem()
            elif name == 'MUMPS':
                cls = SparseSmootherCls[name][0]
                invA0 = cls(A0, gui=self.gui[prc], engine=self.engine)
            elif name.startswith('schur'):
                args = name.split("(")[-1].split(")")[0].split(",")
                dprint1("setting up schur for ", args)
                if len(args) > 1:
                    assert False, "not yet supported"
                for arg in args:
                    r1 = self.engine.dep_var_offset(arg.strip())
                    c1 = self.engine.r_dep_var_offset(arg.strip())
                    B = get_block(A, k, c1)
                    Bt = get_block(A, r1, k).Transpose()
                    Bt = Bt.Transpose()
                    B0 = get_block(A, r1, c1)
                    Md = mfem.HypreParVector(MPI.COMM_WORLD,
                                             B0.GetGlobalNumRows(),
                                             B0.GetColStarts())
                    B0.GetDiag(Md)
                    Bt.InvScaleRows(Md)
                    S = mfem.ParMult(B, Bt)
                    invA0 = mfem.HypreBoomerAMG(S)
                    invA0.iterative_mode = False
            else:
                cls = SparseSmootherCls[name][0]
                invA0 = cls(A0, gui=self.gui[prc])

            invA0.iterative_mode = False
            M.SetDiagonalBlock(k, invA0)
        '''
        We should support Shur complement type preconditioner
        if offset.Size() > 2:
            B =  get_block(A, 1, 0)
            MinvBt = get_block(A, 0, 1)
            #Md = mfem.HypreParVector(MPI.COMM_WORLD,
            #                        A0.GetGlobalNumRows(),
            #                        A0.GetRowStarts())
            Md = mfem.Vector()
            A0.GetDiag(Md)
            MinvBt.InvScaleRows(Md)
            S = mfem.ParMult(B, MinvBt)
            invS = mfem.HypreBoomerAMG(S)
            invS.iterative_mode = False
            M.SetDiagonalBlock(1, invS)
        '''
        maxiter = int(self.maxiter)
        atol = self.abstol
        rtol = self.reltol
        kdim = int(self.kdim)
        printit = 1

        sol = []

        solver = mfem.GMRESSolver(MPI.COMM_WORLD)
        solver.SetKDim(kdim)

        #solver = mfem.MINRESSolver(MPI.COMM_WORLD)
        #solver.SetOperator(A)

        #solver = mfem.CGSolver(MPI.COMM_WORLD)
        solver.SetOperator(A)
        solver.SetAbsTol(atol)
        solver.SetRelTol(rtol)
        solver.SetMaxIter(maxiter)
        solver.SetPreconditioner(M)
        solver.SetPrintLevel(1)

        # solve the problem and gather solution to head node...
        # may not be the best approach

        for bb in b:
            rows = MPI.COMM_WORLD.allgather(np.int32(bb.Size()))
            rowstarts = np.hstack((0, np.cumsum(rows)))
            dprint1("rowstarts/offser", rowstarts, offset.ToList())
            if x is None:
                xx = mfem.BlockVector(offset)
                xx.Assign(0.0)
            else:
                xx = x
                #for j in range(cols):
                #   dprint1(x.GetBlock(j).Size())
                #   dprint1(x.GetBlock(j).GetDataArray())
                #assert False, "must implement this"
            solver.Mult(bb, xx)
            s = []
            for i in range(offset.Size() - 1):
                v = xx.GetBlock(i).GetDataArray()
                vv = gather_vector(v)
                if myid == 0:
                    s.append(vv)
                else:
                    pass
            if myid == 0:
                sol.append(np.hstack(s))
        if myid == 0:
            sol = np.transpose(np.vstack(sol))
            return sol
        else:
            return None